zboinek commited on
Commit
396bfc8
1 Parent(s): ece022c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9278042298748754
28
  - name: Recall
29
  type: recall
30
- value: 0.9373531714956931
31
  - name: F1
32
  type: f1
33
- value: 0.9325542570951586
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9840818466328817
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0614
47
- - Precision: 0.9278
48
- - Recall: 0.9374
49
- - F1: 0.9326
50
- - Accuracy: 0.9841
51
 
52
  ## Model description
53
 
@@ -67,8 +67,8 @@ More information needed
67
 
68
  The following hyperparameters were used during training:
69
  - learning_rate: 2e-05
70
- - train_batch_size: 16
71
- - eval_batch_size: 16
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
@@ -78,14 +78,14 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.2348 | 1.0 | 878 | 0.0676 | 0.9123 | 0.9215 | 0.9169 | 0.9813 |
82
- | 0.053 | 2.0 | 1756 | 0.0615 | 0.9239 | 0.9334 | 0.9287 | 0.9830 |
83
- | 0.0296 | 3.0 | 2634 | 0.0614 | 0.9278 | 0.9374 | 0.9326 | 0.9841 |
84
 
85
 
86
  ### Framework versions
87
 
88
  - Transformers 4.26.0
89
- - Pytorch 1.13.1+cu116
90
  - Datasets 2.9.0
91
  - Tokenizers 0.13.2
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9211136890951276
28
  - name: Recall
29
  type: recall
30
+ value: 0.93265465935787
31
  - name: F1
32
  type: f1
33
+ value: 0.9268482490272373
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9823978902886555
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0639
47
+ - Precision: 0.9211
48
+ - Recall: 0.9327
49
+ - F1: 0.9268
50
+ - Accuracy: 0.9824
51
 
52
  ## Model description
53
 
 
67
 
68
  The following hyperparameters were used during training:
69
  - learning_rate: 2e-05
70
+ - train_batch_size: 32
71
+ - eval_batch_size: 32
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 439 | 0.0788 | 0.8907 | 0.9098 | 0.9002 | 0.9785 |
82
+ | 0.2157 | 2.0 | 878 | 0.0639 | 0.9130 | 0.9297 | 0.9213 | 0.9813 |
83
+ | 0.0586 | 3.0 | 1317 | 0.0639 | 0.9211 | 0.9327 | 0.9268 | 0.9824 |
84
 
85
 
86
  ### Framework versions
87
 
88
  - Transformers 4.26.0
89
+ - Pytorch 1.13.0a0+d321be6
90
  - Datasets 2.9.0
91
  - Tokenizers 0.13.2