| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import argparse | 
					
					
						
						| 
							 | 
						import io | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import tempfile | 
					
					
						
						| 
							 | 
						from datetime import timedelta | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.serialization | 
					
					
						
						| 
							 | 
						from torch.distributed.checkpoint.format_utils import dcp_to_torch_save | 
					
					
						
						| 
							 | 
						from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import fla   | 
					
					
						
						| 
							 | 
						from torchtitan.tools.logging import init_logger, logger | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@torch.inference_mode() | 
					
					
						
						| 
							 | 
						def save_pretrained( | 
					
					
						
						| 
							 | 
						    path: str, | 
					
					
						
						| 
							 | 
						    step: int, | 
					
					
						
						| 
							 | 
						    config: str, | 
					
					
						
						| 
							 | 
						    tokenizer: str | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    logger.info(f"Loading the config from {config}") | 
					
					
						
						| 
							 | 
						    config = AutoConfig.from_pretrained(config, trust_remote_code=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    logger.info(f"Saving the config to {path}") | 
					
					
						
						| 
							 | 
						    config.save_pretrained(path) | 
					
					
						
						| 
							 | 
						    logger.info(f"Loading the tokenizer from {tokenizer}") | 
					
					
						
						| 
							 | 
						    tokenizer = AutoTokenizer.from_pretrained(tokenizer, trust_remote_code=True) | 
					
					
						
						| 
							 | 
						    logger.info(f"Saving the tokenizer to {path}") | 
					
					
						
						| 
							 | 
						    tokenizer.save_pretrained(path) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    with tempfile.TemporaryDirectory() as tmpdir: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        base_checkpoint_dir = path | 
					
					
						
						| 
							 | 
						        checkpoint = os.path.join(base_checkpoint_dir, f'checkpoint/step-{step}') | 
					
					
						
						| 
							 | 
						        checkpoint_path = os.path.join(tmpdir, 'checkpoint.pt') | 
					
					
						
						| 
							 | 
						        logger.info(f"Saving the distributed checkpoint to {checkpoint_path}") | 
					
					
						
						| 
							 | 
						        dcp_to_torch_save(checkpoint, checkpoint_path) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        logger.info(f"Initializing the model from config\n{config}") | 
					
					
						
						| 
							 | 
						        model = AutoModelForCausalLM.from_config(config) | 
					
					
						
						| 
							 | 
						        logger.info(model) | 
					
					
						
						| 
							 | 
						        logger.info("Loading state dict from the checkpoint") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        torch.serialization.add_safe_globals([timedelta, io.BytesIO]) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        model.load_state_dict(torch.load(checkpoint_path, map_location='cpu')['model']) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        logger.info(f"Saving the model to {path}") | 
					
					
						
						| 
							 | 
						        model.save_pretrained(path) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    init_logger() | 
					
					
						
						| 
							 | 
						    parser = argparse.ArgumentParser("Convert DCP format model weights to huggingface-style.") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--path", type=str, required=True) | 
					
					
						
						| 
							 | 
						    parser.add_argument("--step", type=int, required=True) | 
					
					
						
						| 
							 | 
						    parser.add_argument("--config", type=str, required=True) | 
					
					
						
						| 
							 | 
						    parser.add_argument("--tokenizer", type=str, required=True) | 
					
					
						
						| 
							 | 
						    args = parser.parse_args() | 
					
					
						
						| 
							 | 
						    save_pretrained(args.path, args.step, args.config, args.tokenizer) | 
					
					
						
						| 
							 | 
						
 |