binoua's picture
chore: using a database for keys
145adb7
raw
history blame
1.76 kB
from typing import Dict, List, Any
import numpy as np
from concrete.ml.deployment import FHEModelServer
def from_json(python_object):
if "__class__" in python_object:
return bytes(python_object["__value__"])
def to_json(python_object):
if isinstance(python_object, bytes):
return {"__class__": "bytes", "__value__": list(python_object)}
raise TypeError(repr(python_object) + " is not JSON serializable")
class EndpointHandler:
def __init__(self, path=""):
# For server
self.fhemodel_server = FHEModelServer(path + "/compiled_model")
# Simulate a database of keys
self.key_database = {}
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str`)
date (:obj: `str`)
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# Get method
method = data.pop("method", data)
if method is "save_key":
# Get keys
evaluation_keys = from_json(data.pop("evaluation_keys", data))
uid = np.random.randint()
while uid is in self.key_database.keys():
uid = np.random.randint()
self.key_database[uid] = evaluation_keys
return uid
assert method == "inference":
uid = data.pop("uid", data)
# Get inputs
encrypted_inputs = from_json(data.pop("encrypted_inputs", data))
# Find key in the database
evaluation_keys = self.key_database[uid]
# Run CML prediction
encrypted_prediction = self.fhemodel_server.run(encrypted_inputs, evaluation_keys)
return to_json(encrypted_prediction)