concrete-ml-encrypted-logreg / create_zipfiles_and_check_local_endpoint.py
binoua's picture
chore: trying without json
ba3700b
raw
history blame
2.3 kB
from handler import EndpointHandler
import numpy as np
import shutil
from pathlib import Path
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from concrete.ml.sklearn import LogisticRegression
from concrete.ml.deployment import FHEModelClient, FHEModelDev
# Fit a model. In the future, we should find an existing model on HF repository
path_to_model = Path("compiled_model")
do_training_and_compilation = True
x, y = make_classification(n_samples=1000, class_sep=2, n_features=30, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
if do_training_and_compilation:
model_dev = LogisticRegression()
model_dev.fit(X_train, y_train)
# Compile into FHE
model_dev.compile(X_train)
# Saving the model
shutil.rmtree(path_to_model, ignore_errors=True)
fhemodel_dev = FHEModelDev(path_to_model, model_dev)
fhemodel_dev.save(via_mlir=True)
# Init the handler (compilation of the model is done on HF side)
my_handler = EndpointHandler(path=".")
# Recover parameters for client side
fhemodel_client = FHEModelClient(path_to_model)
# Generate the keys
fhemodel_client.generate_private_and_evaluation_keys()
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()
# Test the handler
nb_good = 0
nb_samples = len(X_test)
verbose = False
for i in range(nb_samples):
# Quantize the input and encrypt it
encrypted_inputs = fhemodel_client.quantize_encrypt_serialize([X_test[i]])
# Prepare the payload, including the evaluation keys which are needed server side
payload = {
"inputs": "fake",
"encrypted_inputs": encrypted_inputs,
"evaluation_keys": evaluation_keys,
}
# Run the inference on HF servers
encrypted_prediction = my_handler(payload)
encrypted_prediction = encrypted_prediction
# Decrypt the result and dequantize
prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
prediction = np.argmax(prediction_proba)
if verbose:
print(f"for i-th input, {prediction=} with expected {y_test[i]}")
# Measure accuracy
nb_good += y_test[i] == prediction
print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")