|  | import regex as re | 
					
						
						|  | import base64 | 
					
						
						|  | import os | 
					
						
						|  | import json | 
					
						
						|  | import tiktoken | 
					
						
						|  | import torch | 
					
						
						|  | from torch import TensorType | 
					
						
						|  | from typing import List, Optional, Union, Dict, Any | 
					
						
						|  | from torchvision import transforms | 
					
						
						|  | from transformers import PreTrainedTokenizer | 
					
						
						|  | from transformers.utils import logging, PaddingStrategy | 
					
						
						|  | from transformers.tokenization_utils_base import EncodedInput, BatchEncoding | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ChatGLM4Tokenizer(PreTrainedTokenizer): | 
					
						
						|  | vocab_files_names = {"vocab_file": "tokenizer.model"} | 
					
						
						|  | model_input_names = ["input_ids", "attention_mask", "position_ids"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_file, | 
					
						
						|  | padding_side="left", | 
					
						
						|  | clean_up_tokenization_spaces=False, | 
					
						
						|  | encode_special_tokens=False, | 
					
						
						|  | image_size=None, | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  | self.name = "GLM4Tokenizer" | 
					
						
						|  | self.vocab_file = vocab_file | 
					
						
						|  | pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" | 
					
						
						|  | self.pat_str = re.compile(pat_str) | 
					
						
						|  | self.encode_special_tokens = encode_special_tokens | 
					
						
						|  | self.image_size = image_size | 
					
						
						|  |  | 
					
						
						|  | mergeable_ranks = {} | 
					
						
						|  | with open(vocab_file) as f: | 
					
						
						|  | for line in f: | 
					
						
						|  | token, rank = line.strip().split() | 
					
						
						|  | rank = int(rank) | 
					
						
						|  | token = base64.b64decode(token) | 
					
						
						|  | mergeable_ranks[token] = rank | 
					
						
						|  |  | 
					
						
						|  | self.mergeable_ranks = mergeable_ranks | 
					
						
						|  |  | 
					
						
						|  | self.tokenizer = tiktoken.Encoding( | 
					
						
						|  | name="my_tokenizer", | 
					
						
						|  | pat_str=pat_str, | 
					
						
						|  | mergeable_ranks=mergeable_ranks, | 
					
						
						|  | special_tokens={} | 
					
						
						|  | ) | 
					
						
						|  | self.decoder = {rank: token for token, rank in mergeable_ranks.items()} | 
					
						
						|  | self.n_words = len(self.decoder) | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | padding_side=padding_side, | 
					
						
						|  | clean_up_tokenization_spaces=clean_up_tokenization_spaces, | 
					
						
						|  | encode_special_tokens=encode_special_tokens, | 
					
						
						|  | image_size=image_size, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def vocab_size(self): | 
					
						
						|  | return self.n_words | 
					
						
						|  |  | 
					
						
						|  | def get_vocab(self): | 
					
						
						|  | """ Returns vocab as a dict """ | 
					
						
						|  | vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} | 
					
						
						|  | vocab.update(self.added_tokens_encoder) | 
					
						
						|  | return vocab | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str: | 
					
						
						|  | """ | 
					
						
						|  | Converts a sequence of tokens in a single string. | 
					
						
						|  | """ | 
					
						
						|  | text = "" | 
					
						
						|  | temp = b"" | 
					
						
						|  | for t in tokens: | 
					
						
						|  | if isinstance(t, int): | 
					
						
						|  | t = chr(t) | 
					
						
						|  | if isinstance(t, str): | 
					
						
						|  | if temp: | 
					
						
						|  | text += temp.decode("utf-8", errors="replace") | 
					
						
						|  | elif isinstance(t, bytes): | 
					
						
						|  | temp += t | 
					
						
						|  | else: | 
					
						
						|  | raise TypeError("token should only be of type int, bytes or str") | 
					
						
						|  | if temp: | 
					
						
						|  | text += temp.decode("utf-8", errors="replace") | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | def _tokenize(self, text, **kwargs): | 
					
						
						|  | tokens = [] | 
					
						
						|  | ids = self.tokenizer.encode(text) | 
					
						
						|  | for t in ids: | 
					
						
						|  | tokens.append(self.decoder[t]) | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  | def _convert_token_to_id(self, token): | 
					
						
						|  | """ Converts a token (str) in an id using the vocab. """ | 
					
						
						|  | return self.mergeable_ranks[token] | 
					
						
						|  |  | 
					
						
						|  | def _convert_id_to_token(self, index): | 
					
						
						|  | """Converts an index (integer) in a token (str) using the vocab.""" | 
					
						
						|  | return self.decoder.get(index, "") | 
					
						
						|  |  | 
					
						
						|  | def save_vocabulary(self, save_directory, filename_prefix=None): | 
					
						
						|  | """ | 
					
						
						|  | Save the vocabulary and special tokens file to a directory. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | save_directory (`str`): | 
					
						
						|  | The directory in which to save the vocabulary. | 
					
						
						|  | filename_prefix (`str`, *optional*): | 
					
						
						|  | An optional prefix to add to the named of the saved files. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Tuple(str)`: Paths to the files saved. | 
					
						
						|  | """ | 
					
						
						|  | if os.path.isdir(save_directory): | 
					
						
						|  | vocab_file = os.path.join( | 
					
						
						|  | save_directory, self.vocab_files_names["vocab_file"] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | vocab_file = save_directory | 
					
						
						|  |  | 
					
						
						|  | with open(self.vocab_file, 'rb') as fin: | 
					
						
						|  | proto_str = fin.read() | 
					
						
						|  |  | 
					
						
						|  | with open(vocab_file, "wb") as writer: | 
					
						
						|  | writer.write(proto_str) | 
					
						
						|  |  | 
					
						
						|  | return (vocab_file,) | 
					
						
						|  |  | 
					
						
						|  | def get_prefix_tokens(self): | 
					
						
						|  | prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")] | 
					
						
						|  | return prefix_tokens | 
					
						
						|  |  | 
					
						
						|  | def build_single_message(self, role, metadata, message, tokenize=True, message_prefix=None): | 
					
						
						|  | assert role in ["system", "user", "assistant", "observation"], role | 
					
						
						|  | if tokenize: | 
					
						
						|  | role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n", | 
					
						
						|  | disallowed_special=()) | 
					
						
						|  | message_tokens = self.tokenizer.encode(message, disallowed_special=()) | 
					
						
						|  | if message_prefix is not None: | 
					
						
						|  | message_tokens = message_prefix + message_tokens | 
					
						
						|  | tokens = role_tokens + message_tokens | 
					
						
						|  | return tokens | 
					
						
						|  | else: | 
					
						
						|  | return str(f"<|{role}|>{metadata}\n{message}") | 
					
						
						|  |  | 
					
						
						|  | def apply_chat_template( | 
					
						
						|  | self, | 
					
						
						|  | conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"], | 
					
						
						|  | add_generation_prompt: bool = False, | 
					
						
						|  | tokenize: bool = True, | 
					
						
						|  | padding: bool = False, | 
					
						
						|  | truncation: bool = False, | 
					
						
						|  | max_length: Optional[int] = None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = None, | 
					
						
						|  | return_dict: bool = False, | 
					
						
						|  | tokenizer_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | add_special_tokens: bool = True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]: | 
					
						
						|  |  | 
					
						
						|  | if return_dict and not tokenize: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict " | 
					
						
						|  | "of tokenizer outputs to return." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def handle_single_conversation(conversation): | 
					
						
						|  | input_ids = self.get_prefix_tokens() if add_special_tokens else [] | 
					
						
						|  | input_message = "[gMASK]<sop>" if add_special_tokens else "" | 
					
						
						|  | input_image = None | 
					
						
						|  | transform = transforms.Compose( | 
					
						
						|  | [ | 
					
						
						|  | transforms.Resize( | 
					
						
						|  | (self.image_size, self.image_size), interpolation=transforms.InterpolationMode.BICUBIC | 
					
						
						|  | ), | 
					
						
						|  | transforms.ToTensor(), | 
					
						
						|  | transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | for item in conversation: | 
					
						
						|  | if item.get("tools"): | 
					
						
						|  | tools = item["tools"] | 
					
						
						|  | content = "你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。" | 
					
						
						|  | for tool in tools: | 
					
						
						|  | if tool["type"] == "function": | 
					
						
						|  | function = tool["function"] | 
					
						
						|  | content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}" | 
					
						
						|  | content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。" | 
					
						
						|  | elif tool["type"] == "python": | 
					
						
						|  | content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。" | 
					
						
						|  | elif tool["type"] == "simple_browser": | 
					
						
						|  | content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。" | 
					
						
						|  | elif tool["type"] == "cogview": | 
					
						
						|  | content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。" | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f"Unknown tool type {tool['type']}") | 
					
						
						|  | input = self.build_single_message("system", "", content, tokenize=tokenize) | 
					
						
						|  | if tokenize: | 
					
						
						|  | input_ids.extend(input) | 
					
						
						|  | else: | 
					
						
						|  | input_message += input | 
					
						
						|  | message = "" | 
					
						
						|  | message_prefix = None | 
					
						
						|  | if item.get("image"): | 
					
						
						|  | assert input_image is None, "Multiple images are not supported" | 
					
						
						|  | input_image = transform(item["image"]) | 
					
						
						|  | message_prefix = self.convert_tokens_to_ids( | 
					
						
						|  | ["<|begin_of_image|>", "<|endoftext|>", "<|end_of_image|>"]) | 
					
						
						|  | if item.get("content"): | 
					
						
						|  | message += item["content"] | 
					
						
						|  | if message or message_prefix: | 
					
						
						|  | input = self.build_single_message( | 
					
						
						|  | item["role"], | 
					
						
						|  | item.get("metadata", ""), | 
					
						
						|  | message, | 
					
						
						|  | tokenize=tokenize, | 
					
						
						|  | message_prefix=message_prefix | 
					
						
						|  | ) | 
					
						
						|  | if tokenize: | 
					
						
						|  | input_ids.extend(input) | 
					
						
						|  | else: | 
					
						
						|  | input_message += input | 
					
						
						|  | if add_generation_prompt: | 
					
						
						|  | if tokenize: | 
					
						
						|  | input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")]) | 
					
						
						|  | else: | 
					
						
						|  | input_message += "<|assistant|>" | 
					
						
						|  | return {"input": input_ids if tokenize else input_message, "image": input_image} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation): | 
					
						
						|  | result = handle_single_conversation(conversation) | 
					
						
						|  | input_ids = result["input"] | 
					
						
						|  | input_images = [result["image"]] | 
					
						
						|  | elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation): | 
					
						
						|  | results = [handle_single_conversation(c) for c in conversation] | 
					
						
						|  | input_ids = [item["input"] for item in results] | 
					
						
						|  | input_images = [item["image"] for item in results] | 
					
						
						|  | elif hasattr(conversation, "messages"): | 
					
						
						|  | result = handle_single_conversation(conversation.messages) | 
					
						
						|  | input_ids = result["input"] | 
					
						
						|  | input_images = [result["image"]] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("Invalid conversation format") | 
					
						
						|  |  | 
					
						
						|  | if tokenize: | 
					
						
						|  | output = self.batch_encode_plus( | 
					
						
						|  | [input_ids] if isinstance(input_ids[0], int) else input_ids, | 
					
						
						|  | padding=padding, | 
					
						
						|  | truncation=truncation, | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | return_tensors=return_tensors, | 
					
						
						|  | is_split_into_words=True, | 
					
						
						|  | add_special_tokens=False | 
					
						
						|  | ) | 
					
						
						|  | if return_dict: | 
					
						
						|  | found_image = False | 
					
						
						|  | for image in input_images: | 
					
						
						|  | if image is not None: | 
					
						
						|  | found_image = True | 
					
						
						|  | break | 
					
						
						|  | if found_image: | 
					
						
						|  | output["images"] = torch.stack(input_images) | 
					
						
						|  | return output | 
					
						
						|  | else: | 
					
						
						|  | return output["input_ids"] | 
					
						
						|  | else: | 
					
						
						|  | return input_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def build_inputs_with_special_tokens( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | 
					
						
						|  | adding special tokens. A BERT sequence has the following format: | 
					
						
						|  |  | 
					
						
						|  | - single sequence: `[CLS] X [SEP]` | 
					
						
						|  | - pair of sequences: `[CLS] A [SEP] B [SEP]` | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs to which the special tokens will be added. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | 
					
						
						|  | """ | 
					
						
						|  | prefix_tokens = self.get_prefix_tokens() | 
					
						
						|  | token_ids_0 = prefix_tokens + token_ids_0 | 
					
						
						|  | if token_ids_1 is not None: | 
					
						
						|  | token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")] | 
					
						
						|  | return token_ids_0 | 
					
						
						|  |  | 
					
						
						|  | def _pad( | 
					
						
						|  | self, | 
					
						
						|  | encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | 
					
						
						|  | max_length: Optional[int] = None, | 
					
						
						|  | padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | 
					
						
						|  | pad_to_multiple_of: Optional[int] = None, | 
					
						
						|  | padding_side: Optional[str] = None, | 
					
						
						|  | return_attention_mask: Optional[bool] = None, | 
					
						
						|  | ) -> dict: | 
					
						
						|  | """ | 
					
						
						|  | Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | encoded_inputs: | 
					
						
						|  | Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | 
					
						
						|  | max_length: maximum length of the returned list and optionally padding length (see below). | 
					
						
						|  | Will truncate by taking into account the special tokens. | 
					
						
						|  | padding_strategy: PaddingStrategy to use for padding. | 
					
						
						|  |  | 
					
						
						|  | - PaddingStrategy.LONGEST Pad to the longest sequence in the batch | 
					
						
						|  | - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | 
					
						
						|  | - PaddingStrategy.DO_NOT_PAD: Do not pad | 
					
						
						|  | The tokenizer padding sides are defined in self.padding_side: | 
					
						
						|  |  | 
					
						
						|  | - 'left': pads on the left of the sequences | 
					
						
						|  | - 'right': pads on the right of the sequences | 
					
						
						|  | pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | 
					
						
						|  | This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | 
					
						
						|  | `>= 7.5` (Volta). | 
					
						
						|  | return_attention_mask: | 
					
						
						|  | (optional) Set to False to avoid returning attention mask (default: set to model specifics) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | assert self.padding_side == "left" | 
					
						
						|  |  | 
					
						
						|  | required_input = encoded_inputs[self.model_input_names[0]] | 
					
						
						|  | seq_length = len(required_input) | 
					
						
						|  |  | 
					
						
						|  | if padding_strategy == PaddingStrategy.LONGEST: | 
					
						
						|  | max_length = len(required_input) | 
					
						
						|  |  | 
					
						
						|  | if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | 
					
						
						|  | max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | 
					
						
						|  |  | 
					
						
						|  | needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "attention_mask" not in encoded_inputs: | 
					
						
						|  | encoded_inputs["attention_mask"] = [1] * seq_length | 
					
						
						|  |  | 
					
						
						|  | if "position_ids" not in encoded_inputs: | 
					
						
						|  | encoded_inputs["position_ids"] = list(range(seq_length)) | 
					
						
						|  |  | 
					
						
						|  | if needs_to_be_padded: | 
					
						
						|  | difference = max_length - len(required_input) | 
					
						
						|  |  | 
					
						
						|  | if "attention_mask" in encoded_inputs: | 
					
						
						|  | encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] | 
					
						
						|  | if "position_ids" in encoded_inputs: | 
					
						
						|  | encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] | 
					
						
						|  | encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | 
					
						
						|  |  | 
					
						
						|  | return encoded_inputs | 
					
						
						|  |  |