|
import os |
|
import json |
|
import torch |
|
import torchvision.transforms as transforms |
|
import os.path |
|
import numpy as np |
|
import cv2 |
|
from torch.utils.data import Dataset |
|
import random |
|
from .__base_dataset__ import BaseDataset |
|
|
|
|
|
class FisheyeDataset(BaseDataset): |
|
def __init__(self, cfg, phase, **kwargs): |
|
super(FisheyeDataset, self).__init__( |
|
cfg=cfg, |
|
phase=phase, |
|
**kwargs) |
|
self.metric_scale = cfg.metric_scale |
|
|
|
def load_data(self, path: str, is_rgb_img: bool=False): |
|
if not os.path.exists(path): |
|
self.logger.info(f'>>>>{path} does not exist.') |
|
|
|
|
|
data_type = os.path.splitext(path)[-1] |
|
if data_type in self.img_file_type: |
|
if is_rgb_img: |
|
data = cv2.imread(path) |
|
else: |
|
data = cv2.imread(path, -1) |
|
data[data>65500] = 0 |
|
data &= 0x7FFF |
|
|
|
elif data_type in self.np_file_type: |
|
data = np.load(path) |
|
else: |
|
raise RuntimeError(f'{data_type} is not supported in current version.') |
|
|
|
return data.squeeze() |
|
|
|
def load_batch(self, meta_data, data_path): |
|
curr_intrinsic = meta_data['cam_in'] |
|
|
|
curr_rgb, curr_depth = self.load_rgb_depth(data_path['rgb_path'], data_path['depth_path']) |
|
|
|
curr_sem = self.load_sem_label(data_path['sem_path'], curr_depth) |
|
|
|
curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic) |
|
|
|
curr_normal = self.load_norm_label(data_path['normal_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1]) |
|
|
|
depth_mask = self.load_depth_valid_mask(data_path['depth_mask_path'])[:, :, :] |
|
|
|
|
|
curr_depth[~(depth_mask[:, :, 0])] = -1 |
|
curr_rgb[~(depth_mask[:, :, :])] = 0 |
|
|
|
|
|
curr_stereo_depth = self.load_stereo_depth_label(data_path['disp_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1]) |
|
|
|
data_batch = dict( |
|
curr_rgb = curr_rgb, |
|
curr_depth = curr_depth, |
|
curr_sem = curr_sem, |
|
curr_normal = curr_normal, |
|
curr_cam_model=curr_cam_model, |
|
curr_stereo_depth=curr_stereo_depth, |
|
) |
|
return data_batch |
|
|
|
|
|
def process_depth(self, depth, rgb): |
|
|
|
depth /= self.metric_scale |
|
return depth |
|
|