z4x commited on
Commit
fb0babc
1 Parent(s): b464966

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -4.55 +/- 1.03
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -6.01 +/- 3.43
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:61b32e6ccc0c6a6704defef58ef6b82eeda70acbf15bcfc7639480054f81970e
3
- size 107987
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4ee0fd5e323b45cf266abde2eb3a08abf7743b519c916eb8e4e3eadeb243a30
3
+ size 108023
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff61d6eb820>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7ff61d6e39f0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -46,7 +46,7 @@
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1676057623870786127,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjTrNPq7eEjwcEhQ/jTrNPq7eEjwcEhQ/jTrNPq7eEjwcEhQ/jTrNPq7eEjwcEhQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3dFFvzuHdb79Oh2/P3fUv5W8gT9Q3Ym/16PJvlQIBD/KS5m/xTjDPX4LT75Iwfo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNOs0+rt4SPBwSFD/Pdm08rW5xOyQSOzyNOs0+rt4SPBwSFD/Pdm08rW5xOyQSOzyNOs0+rt4SPBwSFD/Pdm08rW5xOyQSOzyNOs0+rt4SPBwSFD/Pdm08rW5xOyQSOzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.40083733 0.00896422 0.5784013 ]\n [0.40083733 0.00896422 0.5784013 ]\n [0.40083733 0.00896422 0.5784013 ]\n [0.40083733 0.00896422 0.5784013 ]]",
60
- "desired_goal": "[[-0.7727335 -0.23977368 -0.61418134]\n [-1.6598891 1.0135676 -1.0770664 ]\n [-0.39382812 0.5157521 -1.1976254 ]\n [ 0.09532312 -0.20219228 0.48975587]]",
61
- "observation": "[[0.40083733 0.00896422 0.5784013 0.01449366 0.00368396 0.0114179 ]\n [0.40083733 0.00896422 0.5784013 0.01449366 0.00368396 0.0114179 ]\n [0.40083733 0.00896422 0.5784013 0.01449366 0.00368396 0.0114179 ]\n [0.40083733 0.00896422 0.5784013 0.01449366 0.00368396 0.0114179 ]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgLDIPMPB5L0rzMc9td3fPNt9m7yOtmw9ZbHYvETosj1NPmY+reOevUlCcDzVLfY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[ 0.02449822 -0.1116977 0.09755739]\n [ 0.0273274 -0.01898091 0.05779129]\n [-0.02645178 0.08735707 0.22484703]\n [-0.07758269 0.01466424 0.12020461]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,7 +77,7 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu2BwzR2NEcCUhpRSlIwBbJRLMowBdJRHQKzoUauwHJN1fZQoaAZoCWgPQwgfuqC+Za4RwJSGlFKUaBVLMmgWR0Cs6A57gKnfdX2UKGgGaAloD0MITmTmApfHEMCUhpRSlGgVSzJoFkdArOfMp7TlT3V9lChoBmgJaA9DCAOZnUXvtBPAlIaUUpRoFUsyaBZHQKzni24uscR1fZQoaAZoCWgPQwhDGhU42TYQwJSGlFKUaBVLMmgWR0Cs6gKfOD8MdX2UKGgGaAloD0MIOEw0SMHjEsCUhpRSlGgVSzJoFkdArOm+5Yoy9HV9lChoBmgJaA9DCC8WhsjpSxPAlIaUUpRoFUsyaBZHQKzpfQQ+UyJ1fZQoaAZoCWgPQwj0piIVxuYQwJSGlFKUaBVLMmgWR0Cs6Tu8TSLJdX2UKGgGaAloD0MISBYwgVtHFsCUhpRSlGgVSzJoFkdArOvX3BYV7HV9lChoBmgJaA9DCKKW5lYIywvAlIaUUpRoFUsyaBZHQKzrlDlYEGJ1fZQoaAZoCWgPQwhG7BNAMSITwJSGlFKUaBVLMmgWR0Cs61JsGgSOdX2UKGgGaAloD0MIW7QAbaupFMCUhpRSlGgVSzJoFkdArOsRXKbKBHV9lChoBmgJaA9DCJ9XPPVIcxTAlIaUUpRoFUsyaBZHQKzttQMQVbl1fZQoaAZoCWgPQwjfUWNCzAUSwJSGlFKUaBVLMmgWR0Cs7XGJemeldX2UKGgGaAloD0MIL9/6sN6oE8CUhpRSlGgVSzJoFkdArO0vva11GXV9lChoBmgJaA9DCCttcY3PNBXAlIaUUpRoFUsyaBZHQKzs7n/T9bZ1fZQoaAZoCWgPQwjwp8ZLN4kQwJSGlFKUaBVLMmgWR0Cs76umzjWDdX2UKGgGaAloD0MI2spL/ifvFcCUhpRSlGgVSzJoFkdArO9oNiH6/XV9lChoBmgJaA9DCOYklL4QEgTAlIaUUpRoFUsyaBZHQKzvJy+6Ae91fZQoaAZoCWgPQwjTa7OxEtMSwJSGlFKUaBVLMmgWR0Cs7uaURnOCdX2UKGgGaAloD0MIB0XzABYZE8CUhpRSlGgVSzJoFkdArPGKBPKuCHV9lChoBmgJaA9DCIuLo3IT1RPAlIaUUpRoFUsyaBZHQKzxRqesgdR1fZQoaAZoCWgPQwhzLsVVZQ8TwJSGlFKUaBVLMmgWR0Cs8QTtb9qDdX2UKGgGaAloD0MI628JwD9FEsCUhpRSlGgVSzJoFkdArPDD+R5kb3V9lChoBmgJaA9DCAHBHD1+fxLAlIaUUpRoFUsyaBZHQKzy3IBikO91fZQoaAZoCWgPQwheDrvvGH4RwJSGlFKUaBVLMmgWR0Cs8pguh9LIdX2UKGgGaAloD0MINqypLAqLE8CUhpRSlGgVSzJoFkdArPJVi4J/onV9lChoBmgJaA9DCAsIrYcvMxnAlIaUUpRoFUsyaBZHQKzyE8p1A7h1fZQoaAZoCWgPQwhMa9PYXosRwJSGlFKUaBVLMmgWR0Cs8/ELH+6zdX2UKGgGaAloD0MIY0M3+wPFC8CUhpRSlGgVSzJoFkdArPOtI9TxXnV9lChoBmgJaA9DCNv8v+rI8Q3AlIaUUpRoFUsyaBZHQKzzaq0dBB11fZQoaAZoCWgPQwjL2TujrWoXwJSGlFKUaBVLMmgWR0Cs8yj8+A3DdX2UKGgGaAloD0MIQMIwYMkFGcCUhpRSlGgVSzJoFkdArPTv9aUzK3V9lChoBmgJaA9DCCgK9Ik8aRHAlIaUUpRoFUsyaBZHQKz0rDrJKap1fZQoaAZoCWgPQwjrw3qjVsgUwJSGlFKUaBVLMmgWR0Cs9GmdZq20dX2UKGgGaAloD0MIhbGFIAf1EcCUhpRSlGgVSzJoFkdArPQnicXm/3V9lChoBmgJaA9DCAsL7gc88AzAlIaUUpRoFUsyaBZHQKz2A3o9s8B1fZQoaAZoCWgPQwjul09WDBcSwJSGlFKUaBVLMmgWR0Cs9b8FhXr/dX2UKGgGaAloD0MIoDTUKCSJGMCUhpRSlGgVSzJoFkdArPV8aMrEtXV9lChoBmgJaA9DCLMLBtfckQ3AlIaUUpRoFUsyaBZHQKz1OpiI+GJ1fZQoaAZoCWgPQwim0k84u1URwJSGlFKUaBVLMmgWR0Cs9xne7+UAdX2UKGgGaAloD0MImgrxSLy8DsCUhpRSlGgVSzJoFkdArPbVmapgkXV9lChoBmgJaA9DCF2Kq8q+SwXAlIaUUpRoFUsyaBZHQKz2kzD4xlB1fZQoaAZoCWgPQwgqxCPx8vT/v5SGlFKUaBVLMmgWR0Cs9lGvnr6ddX2UKGgGaAloD0MI/+xHisgAG8CUhpRSlGgVSzJoFkdArPgsoOQQtnV9lChoBmgJaA9DCH8XtmYrzxPAlIaUUpRoFUsyaBZHQKz36GY8dPt1fZQoaAZoCWgPQwg7xD9s6TEUwJSGlFKUaBVLMmgWR0Cs96XIMjNZdX2UKGgGaAloD0MI24toO6ZuE8CUhpRSlGgVSzJoFkdArPdkOuq3mXV9lChoBmgJaA9DCIli8gaYuQrAlIaUUpRoFUsyaBZHQKz5PMfzSTh1fZQoaAZoCWgPQwjaykv+Jz8OwJSGlFKUaBVLMmgWR0Cs+PiAlOXWdX2UKGgGaAloD0MI1GGFWz6iE8CUhpRSlGgVSzJoFkdArPi2W8h9s3V9lChoBmgJaA9DCNaPTfIjLhXAlIaUUpRoFUsyaBZHQKz4dLV4HHF1fZQoaAZoCWgPQwhbXU4JiIkQwJSGlFKUaBVLMmgWR0Cs+l9mg8KYdX2UKGgGaAloD0MIn8n+eRpwB8CUhpRSlGgVSzJoFkdArPobel9Br3V9lChoBmgJaA9DCBIVqpuLvxXAlIaUUpRoFUsyaBZHQKz52Qz1sch1fZQoaAZoCWgPQwiveOqRBpcBwJSGlFKUaBVLMmgWR0Cs+ZcZk079dX2UKGgGaAloD0MIuvdwyXFXEcCUhpRSlGgVSzJoFkdArPto0ZWJanV9lChoBmgJaA9DCNqQf2YQvw3AlIaUUpRoFUsyaBZHQKz7JHf/FR51fZQoaAZoCWgPQwg89UiD27oMwJSGlFKUaBVLMmgWR0Cs+uJKzzErdX2UKGgGaAloD0MI7fFCOjyEE8CUhpRSlGgVSzJoFkdArPqgV2zOX3V9lChoBmgJaA9DCHufqkIDEQ/AlIaUUpRoFUsyaBZHQKz8hBguyu91fZQoaAZoCWgPQwjSUnk7wpkRwJSGlFKUaBVLMmgWR0Cs/D++ueSTdX2UKGgGaAloD0MIeeqRBrcFEsCUhpRSlGgVSzJoFkdArPv9TYNAknV9lChoBmgJaA9DCCbICKhwJBbAlIaUUpRoFUsyaBZHQKz7u2fChvl1fZQoaAZoCWgPQwjy7zMuHGgVwJSGlFKUaBVLMmgWR0Cs/ZpRwZO0dX2UKGgGaAloD0MI6E8b1elwFMCUhpRSlGgVSzJoFkdArP1WB+Wnj3V9lChoBmgJaA9DCC/E6o8wzBLAlIaUUpRoFUsyaBZHQKz9E3z+WGB1fZQoaAZoCWgPQwiJsUy/RPwLwJSGlFKUaBVLMmgWR0Cs/NGXPZ7HdX2UKGgGaAloD0MIoyO5/IeUD8CUhpRSlGgVSzJoFkdArP6lXtBv73V9lChoBmgJaA9DCCfbwB2ogxHAlIaUUpRoFUsyaBZHQKz+YTakAPx1fZQoaAZoCWgPQwgmGTkLe2oQwJSGlFKUaBVLMmgWR0Cs/h7/XGwSdX2UKGgGaAloD0MI2/0qwHeLEMCUhpRSlGgVSzJoFkdArP3dVWCEpXV9lChoBmgJaA9DCMxdS8gHHRHAlIaUUpRoFUsyaBZHQKz/vPszEaV1fZQoaAZoCWgPQwj7PhwkRHkawJSGlFKUaBVLMmgWR0Cs/3jWK/EgdX2UKGgGaAloD0MIaThlbr4BE8CUhpRSlGgVSzJoFkdArP82XE61cHV9lChoBmgJaA9DCPlnBvGBTRHAlIaUUpRoFUsyaBZHQKz+9HlOoHd1fZQoaAZoCWgPQwhI4uXpXNEVwJSGlFKUaBVLMmgWR0CtAMkG7jDLdX2UKGgGaAloD0MIbXNjesJyEMCUhpRSlGgVSzJoFkdArQCE4rBj4HV9lChoBmgJaA9DCHBh3Xh3BBDAlIaUUpRoFUsyaBZHQK0AQnAqNId1fZQoaAZoCWgPQwgM5q+QubITwJSGlFKUaBVLMmgWR0CtAAB0p3HJdX2UKGgGaAloD0MIRSkhWFVPFcCUhpRSlGgVSzJoFkdArQHbHIZIhHV9lChoBmgJaA9DCOW0p+Sc2BPAlIaUUpRoFUsyaBZHQK0BlrkbPyF1fZQoaAZoCWgPQwhtcY3PZP8VwJSGlFKUaBVLMmgWR0CtAVQyAQQMdX2UKGgGaAloD0MIY3st6L3BEcCUhpRSlGgVSzJoFkdArQESUA1ejXV9lChoBmgJaA9DCAQ7/gsE4QPAlIaUUpRoFUsyaBZHQK0C+XsPatd1fZQoaAZoCWgPQwjA0CNGzw0RwJSGlFKUaBVLMmgWR0CtArX6ZYxMdX2UKGgGaAloD0MIrTB9ryG4EsCUhpRSlGgVSzJoFkdArQJzeVLSNXV9lChoBmgJaA9DCHP3OT5a3ArAlIaUUpRoFUsyaBZHQK0CMXiR4hV1fZQoaAZoCWgPQwjl0CLb+S4SwJSGlFKUaBVLMmgWR0CtBBRCx/utdX2UKGgGaAloD0MIxCRcyCMYEMCUhpRSlGgVSzJoFkdArQPQB1cMVnV9lChoBmgJaA9DCMlxp3SwvhDAlIaUUpRoFUsyaBZHQK0DjZ2ZApt1fZQoaAZoCWgPQwjF46JaRJQQwJSGlFKUaBVLMmgWR0CtA0uyVv/BdX2UKGgGaAloD0MIUBvV6UB2E8CUhpRSlGgVSzJoFkdArQUvHLida3V9lChoBmgJaA9DCL4tWKoLOP2/lIaUUpRoFUsyaBZHQK0E6skIHC51fZQoaAZoCWgPQwihSs0eaMUOwJSGlFKUaBVLMmgWR0CtBKg6dUbUdX2UKGgGaAloD0MIzGPNyCCXFsCUhpRSlGgVSzJoFkdArQRmZZ0Sy3V9lChoBmgJaA9DCDPfwU8cIBHAlIaUUpRoFUsyaBZHQK0GfU1AJLN1fZQoaAZoCWgPQwjVlGQdjp4RwJSGlFKUaBVLMmgWR0CtBjm5DqnndX2UKGgGaAloD0MIyLJg4o9iBsCUhpRSlGgVSzJoFkdArQX42jwhGHV9lChoBmgJaA9DCEevBigNtRPAlIaUUpRoFUsyaBZHQK0Ft9GZuyh1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8df372f160>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f8df3728600>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1676074952829145953,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsozRPj+JjLwv7RY/sozRPj+JjLwv7RY/sozRPj+JjLwv7RY/sozRPj+JjLwv7RY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/Tpxvwnxz79D6tI/ltPPv3mBpr4ShKE/gEGUv6EOsb7NX8E9kS62PztJIL8vYk0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACyjNE+P4mMvC/tFj86SWA8DfyGuhdqHjyyjNE+P4mMvC/tFj86SWA8DfyGuhdqHjyyjNE+P4mMvC/tFj86SWA8DfyGuhdqHjyyjNE+P4mMvC/tFj86SWA8DfyGuhdqHjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.40927655 -0.01715529 0.58955663]\n [ 0.40927655 -0.01715529 0.58955663]\n [ 0.40927655 -0.01715529 0.58955663]\n [ 0.40927655 -0.01715529 0.58955663]]",
60
+ "desired_goal": "[[-0.94230634 -1.6245433 1.6477741 ]\n [-1.6236446 -0.32520655 1.261843 ]\n [-1.1582489 -0.34581473 0.09442101]\n [ 1.4232961 -0.6261174 0.8022794 ]]",
61
+ "observation": "[[ 0.40927655 -0.01715529 0.58955663 0.01368933 -0.00102985 0.00966885]\n [ 0.40927655 -0.01715529 0.58955663 0.01368933 -0.00102985 0.00966885]\n [ 0.40927655 -0.01715529 0.58955663 0.01368933 -0.00102985 0.00966885]\n [ 0.40927655 -0.01715529 0.58955663 0.01368933 -0.00102985 0.00966885]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgLGXvBnGobzzgYk+aMWKvVlzm73ECFY+Y2qSvUfB573bxpA+F1LXPao4sr22KFo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.01851726 -0.01974778 0.26856956]\n [-0.06775934 -0.0759036 0.20901781]\n [-0.07149198 -0.11316162 0.28276715]\n [ 0.10513704 -0.08702214 0.21304592]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXVDfMqdLAsCUhpRSlIwBbJRLMowBdJRHQKas29lEqlR1fZQoaAZoCWgPQwjMYfcdwwMlwJSGlFKUaBVLMmgWR0CmrJ8JtzjndX2UKGgGaAloD0MIgqynVl+tI8CUhpRSlGgVSzJoFkdApqxijesPrnV9lChoBmgJaA9DCCMUW0HTkizAlIaUUpRoFUsyaBZHQKasJm+TNdJ1fZQoaAZoCWgPQwiZvAFmvgMCwJSGlFKUaBVLMmgWR0Cmrd96sySFdX2UKGgGaAloD0MItOVciquK/b+UhpRSlGgVSzJoFkdApq2ix/ustHV9lChoBmgJaA9DCInS3uALeyPAlIaUUpRoFUsyaBZHQKatZj5Kvmp1fZQoaAZoCWgPQwgkC5jArZsCwJSGlFKUaBVLMmgWR0CmrSoRh+fAdX2UKGgGaAloD0MIEmdF1ESfEcCUhpRSlGgVSzJoFkdApq7pwXIlt3V9lChoBmgJaA9DCLiQR3AjZQjAlIaUUpRoFUsyaBZHQKaurMfRu0l1fZQoaAZoCWgPQwgv3/qw3pgfwJSGlFKUaBVLMmgWR0CmrnBFEy+IdX2UKGgGaAloD0MIfjmzXaG3IcCUhpRSlGgVSzJoFkdApq40G/vfCXV9lChoBmgJaA9DCLsNar+18wDAlIaUUpRoFUsyaBZHQKav8R7qptJ1fZQoaAZoCWgPQwhi83FtqCgfwJSGlFKUaBVLMmgWR0Cmr7RJVbRndX2UKGgGaAloD0MIj+OHSiOmEcCUhpRSlGgVSzJoFkdApq933JxNqXV9lChoBmgJaA9DCItUGFsIUhTAlIaUUpRoFUsyaBZHQKavO7SRbKR1fZQoaAZoCWgPQwg0SMFTyJ0iwJSGlFKUaBVLMmgWR0CmsPqLKmsOdX2UKGgGaAloD0MIA83n3O2KG8CUhpRSlGgVSzJoFkdAprC+hTOxB3V9lChoBmgJaA9DCP+R6dDpWQbAlIaUUpRoFUsyaBZHQKawgpXp4bF1fZQoaAZoCWgPQwgBipElcyz6v5SGlFKUaBVLMmgWR0CmsEc/dIoWdX2UKGgGaAloD0MIjfFh9rKdEMCUhpRSlGgVSzJoFkdAprINCeEqUnV9lChoBmgJaA9DCHWsUnqmxxPAlIaUUpRoFUsyaBZHQKax0F23azx1fZQoaAZoCWgPQwicacL2k4EgwJSGlFKUaBVLMmgWR0CmsZQNb1RMdX2UKGgGaAloD0MIkSdJ10y+CcCUhpRSlGgVSzJoFkdAprFX6GgzxnV9lChoBmgJaA9DCIv6JHfYRPe/lIaUUpRoFUsyaBZHQKazEOvt+kR1fZQoaAZoCWgPQwgK8x5nmiAZwJSGlFKUaBVLMmgWR0CmstQBo24vdX2UKGgGaAloD0MIofMau0TdIcCUhpRSlGgVSzJoFkdAprKXjS5RTHV9lChoBmgJaA9DCDaU2otoO/2/lIaUUpRoFUsyaBZHQKayW2Ifr8l1fZQoaAZoCWgPQwi3mQrxSDwGwJSGlFKUaBVLMmgWR0CmtCDsUqQSdX2UKGgGaAloD0MI4V6Zt+rqHsCUhpRSlGgVSzJoFkdAprPkFINEw3V9lChoBmgJaA9DCMaGbvYHihTAlIaUUpRoFUsyaBZHQKazp4/NZ/11fZQoaAZoCWgPQwg74SU49VESwJSGlFKUaBVLMmgWR0Cms2t+1Bt2dX2UKGgGaAloD0MIvk9VoYFY/7+UhpRSlGgVSzJoFkdAprUqNEPUa3V9lChoBmgJaA9DCJBq2O+JRRzAlIaUUpRoFUsyaBZHQKa07VoYekp1fZQoaAZoCWgPQwgoLVxWYUMRwJSGlFKUaBVLMmgWR0CmtLDifg76dX2UKGgGaAloD0MImN2Th4UKIMCUhpRSlGgVSzJoFkdAprR01fmcOXV9lChoBmgJaA9DCEFmZ9E79Q/AlIaUUpRoFUsyaBZHQKa2P1cMVlB1fZQoaAZoCWgPQwhSSDKrdxgWwJSGlFKUaBVLMmgWR0CmtgKcVgx8dX2UKGgGaAloD0MIww5j0t/jIsCUhpRSlGgVSzJoFkdAprXGN5t3wHV9lChoBmgJaA9DCPLs8q0P6y7AlIaUUpRoFUsyaBZHQKa1iiaiKzl1fZQoaAZoCWgPQwiIE5hO6/YXwJSGlFKUaBVLMmgWR0Cmt02St/4JdX2UKGgGaAloD0MIVRaFXRQlJsCUhpRSlGgVSzJoFkdAprcQ7gbZOHV9lChoBmgJaA9DCD19BP7wsyDAlIaUUpRoFUsyaBZHQKa21IgeRxN1fZQoaAZoCWgPQwi3JAfsavojwJSGlFKUaBVLMmgWR0Cmtph7NSqEdX2UKGgGaAloD0MIyLYMOEsJGcCUhpRSlGgVSzJoFkdAprhc0m+j/XV9lChoBmgJaA9DCLFqEOZ2rwHAlIaUUpRoFUsyaBZHQKa4H/Lkjop1fZQoaAZoCWgPQwhjJlEv+LwjwJSGlFKUaBVLMmgWR0Cmt+OXmeUZdX2UKGgGaAloD0MI6gPJO4cyEMCUhpRSlGgVSzJoFkdAprenaYeDF3V9lChoBmgJaA9DCFab/1cdySTAlIaUUpRoFUsyaBZHQKa5ajrzGxV1fZQoaAZoCWgPQwhdTgmISTgTwJSGlFKUaBVLMmgWR0CmuS11GLDRdX2UKGgGaAloD0MI1LfM6bJgI8CUhpRSlGgVSzJoFkdAprjw9gWrO3V9lChoBmgJaA9DCIi7ehUZXRXAlIaUUpRoFUsyaBZHQKa4tNcGC7N1fZQoaAZoCWgPQwjr/rEQHaIkwJSGlFKUaBVLMmgWR0Cmum1y/9HddX2UKGgGaAloD0MI1qvI6IBk/7+UhpRSlGgVSzJoFkdAprowX2ugYnV9lChoBmgJaA9DCBQgCmZMAQnAlIaUUpRoFUsyaBZHQKa588RL9Mt1fZQoaAZoCWgPQwh8fhghPIoYwJSGlFKUaBVLMmgWR0CmubefAbhndX2UKGgGaAloD0MI/yPTodMjLMCUhpRSlGgVSzJoFkdAprtqDPGACnV9lChoBmgJaA9DCBZQqKePYAXAlIaUUpRoFUsyaBZHQKa7LSP2f051fZQoaAZoCWgPQwg2rn/XZ/4TwJSGlFKUaBVLMmgWR0CmuvC3G4qgdX2UKGgGaAloD0MI9KRMamgDAcCUhpRSlGgVSzJoFkdAprq0jiXIEXV9lChoBmgJaA9DCD7QCgxZPQ/AlIaUUpRoFUsyaBZHQKa8e/X5FgF1fZQoaAZoCWgPQwjku5S6ZNQqwJSGlFKUaBVLMmgWR0CmvD8/MW43dX2UKGgGaAloD0MIySB3EaZwKMCUhpRSlGgVSzJoFkdAprwC08eS0XV9lChoBmgJaA9DCMFXdOs1JSnAlIaUUpRoFUsyaBZHQKa7xrcj7hx1fZQoaAZoCWgPQwiHvyZr1FskwJSGlFKUaBVLMmgWR0CmvX+fh/AkdX2UKGgGaAloD0MIODKP/MFADcCUhpRSlGgVSzJoFkdApr1C1eBxxXV9lChoBmgJaA9DCC6M9KJ2TyTAlIaUUpRoFUsyaBZHQKa9Bnf2saN1fZQoaAZoCWgPQwjey31yFEARwJSGlFKUaBVLMmgWR0CmvMpFCswMdX2UKGgGaAloD0MIm3YxzXTPE8CUhpRSlGgVSzJoFkdApr6PUF0PpnV9lChoBmgJaA9DCH4dOGdE6RbAlIaUUpRoFUsyaBZHQKa+Umplz2h1fZQoaAZoCWgPQwgddXRcjaQswJSGlFKUaBVLMmgWR0CmvhYJNTLodX2UKGgGaAloD0MIfqoKDcSy+7+UhpRSlGgVSzJoFkdApr3aBXjlxXV9lChoBmgJaA9DCFa3ek56bx7AlIaUUpRoFUsyaBZHQKa/wGGEf1Z1fZQoaAZoCWgPQwhKCcGqenElwJSGlFKUaBVLMmgWR0Cmv4Q+UyHmdX2UKGgGaAloD0MICf63kh07G8CUhpRSlGgVSzJoFkdApr9IjrzGxXV9lChoBmgJaA9DCNVCyeTUzgvAlIaUUpRoFUsyaBZHQKa/DVBlcyF1fZQoaAZoCWgPQwiG5GTiVmEvwJSGlFKUaBVLMmgWR0CmwYgS39aVdX2UKGgGaAloD0MI0NIVbCPuEsCUhpRSlGgVSzJoFkdApsFMHMUypXV9lChoBmgJaA9DCAK8BRIUbx3AlIaUUpRoFUsyaBZHQKbBEHE/B311fZQoaAZoCWgPQwgx0LUvoI8kwJSGlFKUaBVLMmgWR0CmwNU/W1+idX2UKGgGaAloD0MIB7ZKsDhsG8CUhpRSlGgVSzJoFkdApsNS1PWQOnV9lChoBmgJaA9DCBlYx/FDxSfAlIaUUpRoFUsyaBZHQKbDFxe9i+d1fZQoaAZoCWgPQwhffNEeL1QcwJSGlFKUaBVLMmgWR0CmwtuBtk4FdX2UKGgGaAloD0MI8MSsF0NZC8CUhpRSlGgVSzJoFkdApsKgMYuTR3V9lChoBmgJaA9DCKmI00m2WhDAlIaUUpRoFUsyaBZHQKbFGi35N491fZQoaAZoCWgPQwga4e1BCMgtwJSGlFKUaBVLMmgWR0CmxN41P3zudX2UKGgGaAloD0MIwhN6/UmsFMCUhpRSlGgVSzJoFkdApsSiuEEkjXV9lChoBmgJaA9DCCmTGtoAfCPAlIaUUpRoFUsyaBZHQKbEZ2xIJ7d1fZQoaAZoCWgPQwifBaG8j4MQwJSGlFKUaBVLMmgWR0CmxuGRvFWGdX2UKGgGaAloD0MIdLaA0HpYKcCUhpRSlGgVSzJoFkdApsalzhgmZ3V9lChoBmgJaA9DCMmP+BVrUCfAlIaUUpRoFUsyaBZHQKbGainpB5Z1fZQoaAZoCWgPQwh88rBQa6omwJSGlFKUaBVLMmgWR0Cmxi7XHzYmdX2UKGgGaAloD0MIYfpeQ3CsLMCUhpRSlGgVSzJoFkdApsjMAksz23V9lChoBmgJaA9DCOHQWzy8ZwfAlIaUUpRoFUsyaBZHQKbIkByS3b51fZQoaAZoCWgPQwiAYmTJHEMpwJSGlFKUaBVLMmgWR0CmyFTaTOgQdX2UKGgGaAloD0MIZfz7jAv3KsCUhpRSlGgVSzJoFkdApsgZltj0+XV9lChoBmgJaA9DCDbNO07RgR7AlIaUUpRoFUsyaBZHQKbKJIuoP091fZQoaAZoCWgPQwgC2evdH6ciwJSGlFKUaBVLMmgWR0CmyefACW/rdX2UKGgGaAloD0MIHqm+84tCHsCUhpRSlGgVSzJoFkdApsmrSkTHsHV9lChoBmgJaA9DCJ9XPPVIowfAlIaUUpRoFUsyaBZHQKbJbx4IKMN1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:16a16db6ce1f3db33427ca6517e048a5d7d6b74bcdda36394de9f93370929e9a
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c247ddbff64784604ad67ee0e272ed5fb48fcc067730923388f16ad2b4c9df2f
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6022dc9ba29143f25566e5b0a889042cb2d1670f8179e4cae8da687a2327dc1f
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f883b2e967f123b29225e6d46647d45d54f37d5d3c6d5b06e59a6051136867e
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff61d6eb820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff61d6e39f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676057623870786127, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjTrNPq7eEjwcEhQ/jTrNPq7eEjwcEhQ/jTrNPq7eEjwcEhQ/jTrNPq7eEjwcEhQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3dFFvzuHdb79Oh2/P3fUv5W8gT9Q3Ym/16PJvlQIBD/KS5m/xTjDPX4LT75Iwfo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACNOs0+rt4SPBwSFD/Pdm08rW5xOyQSOzyNOs0+rt4SPBwSFD/Pdm08rW5xOyQSOzyNOs0+rt4SPBwSFD/Pdm08rW5xOyQSOzyNOs0+rt4SPBwSFD/Pdm08rW5xOyQSOzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40083733 0.00896422 0.5784013 ]\n [0.40083733 0.00896422 0.5784013 ]\n [0.40083733 0.00896422 0.5784013 ]\n [0.40083733 0.00896422 0.5784013 ]]", "desired_goal": "[[-0.7727335 -0.23977368 -0.61418134]\n [-1.6598891 1.0135676 -1.0770664 ]\n [-0.39382812 0.5157521 -1.1976254 ]\n [ 0.09532312 -0.20219228 0.48975587]]", "observation": "[[0.40083733 0.00896422 0.5784013 0.01449366 0.00368396 0.0114179 ]\n [0.40083733 0.00896422 0.5784013 0.01449366 0.00368396 0.0114179 ]\n [0.40083733 0.00896422 0.5784013 0.01449366 0.00368396 0.0114179 ]\n [0.40083733 0.00896422 0.5784013 0.01449366 0.00368396 0.0114179 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgLDIPMPB5L0rzMc9td3fPNt9m7yOtmw9ZbHYvETosj1NPmY+reOevUlCcDzVLfY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02449822 -0.1116977 0.09755739]\n [ 0.0273274 -0.01898091 0.05779129]\n [-0.02645178 0.08735707 0.22484703]\n [-0.07758269 0.01466424 0.12020461]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIu2BwzR2NEcCUhpRSlIwBbJRLMowBdJRHQKzoUauwHJN1fZQoaAZoCWgPQwgfuqC+Za4RwJSGlFKUaBVLMmgWR0Cs6A57gKnfdX2UKGgGaAloD0MITmTmApfHEMCUhpRSlGgVSzJoFkdArOfMp7TlT3V9lChoBmgJaA9DCAOZnUXvtBPAlIaUUpRoFUsyaBZHQKzni24uscR1fZQoaAZoCWgPQwhDGhU42TYQwJSGlFKUaBVLMmgWR0Cs6gKfOD8MdX2UKGgGaAloD0MIOEw0SMHjEsCUhpRSlGgVSzJoFkdArOm+5Yoy9HV9lChoBmgJaA9DCC8WhsjpSxPAlIaUUpRoFUsyaBZHQKzpfQQ+UyJ1fZQoaAZoCWgPQwj0piIVxuYQwJSGlFKUaBVLMmgWR0Cs6Tu8TSLJdX2UKGgGaAloD0MISBYwgVtHFsCUhpRSlGgVSzJoFkdArOvX3BYV7HV9lChoBmgJaA9DCKKW5lYIywvAlIaUUpRoFUsyaBZHQKzrlDlYEGJ1fZQoaAZoCWgPQwhG7BNAMSITwJSGlFKUaBVLMmgWR0Cs61JsGgSOdX2UKGgGaAloD0MIW7QAbaupFMCUhpRSlGgVSzJoFkdArOsRXKbKBHV9lChoBmgJaA9DCJ9XPPVIcxTAlIaUUpRoFUsyaBZHQKzttQMQVbl1fZQoaAZoCWgPQwjfUWNCzAUSwJSGlFKUaBVLMmgWR0Cs7XGJemeldX2UKGgGaAloD0MIL9/6sN6oE8CUhpRSlGgVSzJoFkdArO0vva11GXV9lChoBmgJaA9DCCttcY3PNBXAlIaUUpRoFUsyaBZHQKzs7n/T9bZ1fZQoaAZoCWgPQwjwp8ZLN4kQwJSGlFKUaBVLMmgWR0Cs76umzjWDdX2UKGgGaAloD0MI2spL/ifvFcCUhpRSlGgVSzJoFkdArO9oNiH6/XV9lChoBmgJaA9DCOYklL4QEgTAlIaUUpRoFUsyaBZHQKzvJy+6Ae91fZQoaAZoCWgPQwjTa7OxEtMSwJSGlFKUaBVLMmgWR0Cs7uaURnOCdX2UKGgGaAloD0MIB0XzABYZE8CUhpRSlGgVSzJoFkdArPGKBPKuCHV9lChoBmgJaA9DCIuLo3IT1RPAlIaUUpRoFUsyaBZHQKzxRqesgdR1fZQoaAZoCWgPQwhzLsVVZQ8TwJSGlFKUaBVLMmgWR0Cs8QTtb9qDdX2UKGgGaAloD0MI628JwD9FEsCUhpRSlGgVSzJoFkdArPDD+R5kb3V9lChoBmgJaA9DCAHBHD1+fxLAlIaUUpRoFUsyaBZHQKzy3IBikO91fZQoaAZoCWgPQwheDrvvGH4RwJSGlFKUaBVLMmgWR0Cs8pguh9LIdX2UKGgGaAloD0MINqypLAqLE8CUhpRSlGgVSzJoFkdArPJVi4J/onV9lChoBmgJaA9DCAsIrYcvMxnAlIaUUpRoFUsyaBZHQKzyE8p1A7h1fZQoaAZoCWgPQwhMa9PYXosRwJSGlFKUaBVLMmgWR0Cs8/ELH+6zdX2UKGgGaAloD0MIY0M3+wPFC8CUhpRSlGgVSzJoFkdArPOtI9TxXnV9lChoBmgJaA9DCNv8v+rI8Q3AlIaUUpRoFUsyaBZHQKzzaq0dBB11fZQoaAZoCWgPQwjL2TujrWoXwJSGlFKUaBVLMmgWR0Cs8yj8+A3DdX2UKGgGaAloD0MIQMIwYMkFGcCUhpRSlGgVSzJoFkdArPTv9aUzK3V9lChoBmgJaA9DCCgK9Ik8aRHAlIaUUpRoFUsyaBZHQKz0rDrJKap1fZQoaAZoCWgPQwjrw3qjVsgUwJSGlFKUaBVLMmgWR0Cs9GmdZq20dX2UKGgGaAloD0MIhbGFIAf1EcCUhpRSlGgVSzJoFkdArPQnicXm/3V9lChoBmgJaA9DCAsL7gc88AzAlIaUUpRoFUsyaBZHQKz2A3o9s8B1fZQoaAZoCWgPQwjul09WDBcSwJSGlFKUaBVLMmgWR0Cs9b8FhXr/dX2UKGgGaAloD0MIoDTUKCSJGMCUhpRSlGgVSzJoFkdArPV8aMrEtXV9lChoBmgJaA9DCLMLBtfckQ3AlIaUUpRoFUsyaBZHQKz1OpiI+GJ1fZQoaAZoCWgPQwim0k84u1URwJSGlFKUaBVLMmgWR0Cs9xne7+UAdX2UKGgGaAloD0MImgrxSLy8DsCUhpRSlGgVSzJoFkdArPbVmapgkXV9lChoBmgJaA9DCF2Kq8q+SwXAlIaUUpRoFUsyaBZHQKz2kzD4xlB1fZQoaAZoCWgPQwgqxCPx8vT/v5SGlFKUaBVLMmgWR0Cs9lGvnr6ddX2UKGgGaAloD0MI/+xHisgAG8CUhpRSlGgVSzJoFkdArPgsoOQQtnV9lChoBmgJaA9DCH8XtmYrzxPAlIaUUpRoFUsyaBZHQKz36GY8dPt1fZQoaAZoCWgPQwg7xD9s6TEUwJSGlFKUaBVLMmgWR0Cs96XIMjNZdX2UKGgGaAloD0MI24toO6ZuE8CUhpRSlGgVSzJoFkdArPdkOuq3mXV9lChoBmgJaA9DCIli8gaYuQrAlIaUUpRoFUsyaBZHQKz5PMfzSTh1fZQoaAZoCWgPQwjaykv+Jz8OwJSGlFKUaBVLMmgWR0Cs+PiAlOXWdX2UKGgGaAloD0MI1GGFWz6iE8CUhpRSlGgVSzJoFkdArPi2W8h9s3V9lChoBmgJaA9DCNaPTfIjLhXAlIaUUpRoFUsyaBZHQKz4dLV4HHF1fZQoaAZoCWgPQwhbXU4JiIkQwJSGlFKUaBVLMmgWR0Cs+l9mg8KYdX2UKGgGaAloD0MIn8n+eRpwB8CUhpRSlGgVSzJoFkdArPobel9Br3V9lChoBmgJaA9DCBIVqpuLvxXAlIaUUpRoFUsyaBZHQKz52Qz1sch1fZQoaAZoCWgPQwiveOqRBpcBwJSGlFKUaBVLMmgWR0Cs+ZcZk079dX2UKGgGaAloD0MIuvdwyXFXEcCUhpRSlGgVSzJoFkdArPto0ZWJanV9lChoBmgJaA9DCNqQf2YQvw3AlIaUUpRoFUsyaBZHQKz7JHf/FR51fZQoaAZoCWgPQwg89UiD27oMwJSGlFKUaBVLMmgWR0Cs+uJKzzErdX2UKGgGaAloD0MI7fFCOjyEE8CUhpRSlGgVSzJoFkdArPqgV2zOX3V9lChoBmgJaA9DCHufqkIDEQ/AlIaUUpRoFUsyaBZHQKz8hBguyu91fZQoaAZoCWgPQwjSUnk7wpkRwJSGlFKUaBVLMmgWR0Cs/D++ueSTdX2UKGgGaAloD0MIeeqRBrcFEsCUhpRSlGgVSzJoFkdArPv9TYNAknV9lChoBmgJaA9DCCbICKhwJBbAlIaUUpRoFUsyaBZHQKz7u2fChvl1fZQoaAZoCWgPQwjy7zMuHGgVwJSGlFKUaBVLMmgWR0Cs/ZpRwZO0dX2UKGgGaAloD0MI6E8b1elwFMCUhpRSlGgVSzJoFkdArP1WB+Wnj3V9lChoBmgJaA9DCC/E6o8wzBLAlIaUUpRoFUsyaBZHQKz9E3z+WGB1fZQoaAZoCWgPQwiJsUy/RPwLwJSGlFKUaBVLMmgWR0Cs/NGXPZ7HdX2UKGgGaAloD0MIoyO5/IeUD8CUhpRSlGgVSzJoFkdArP6lXtBv73V9lChoBmgJaA9DCCfbwB2ogxHAlIaUUpRoFUsyaBZHQKz+YTakAPx1fZQoaAZoCWgPQwgmGTkLe2oQwJSGlFKUaBVLMmgWR0Cs/h7/XGwSdX2UKGgGaAloD0MI2/0qwHeLEMCUhpRSlGgVSzJoFkdArP3dVWCEpXV9lChoBmgJaA9DCMxdS8gHHRHAlIaUUpRoFUsyaBZHQKz/vPszEaV1fZQoaAZoCWgPQwj7PhwkRHkawJSGlFKUaBVLMmgWR0Cs/3jWK/EgdX2UKGgGaAloD0MIaThlbr4BE8CUhpRSlGgVSzJoFkdArP82XE61cHV9lChoBmgJaA9DCPlnBvGBTRHAlIaUUpRoFUsyaBZHQKz+9HlOoHd1fZQoaAZoCWgPQwhI4uXpXNEVwJSGlFKUaBVLMmgWR0CtAMkG7jDLdX2UKGgGaAloD0MIbXNjesJyEMCUhpRSlGgVSzJoFkdArQCE4rBj4HV9lChoBmgJaA9DCHBh3Xh3BBDAlIaUUpRoFUsyaBZHQK0AQnAqNId1fZQoaAZoCWgPQwgM5q+QubITwJSGlFKUaBVLMmgWR0CtAAB0p3HJdX2UKGgGaAloD0MIRSkhWFVPFcCUhpRSlGgVSzJoFkdArQHbHIZIhHV9lChoBmgJaA9DCOW0p+Sc2BPAlIaUUpRoFUsyaBZHQK0BlrkbPyF1fZQoaAZoCWgPQwhtcY3PZP8VwJSGlFKUaBVLMmgWR0CtAVQyAQQMdX2UKGgGaAloD0MIY3st6L3BEcCUhpRSlGgVSzJoFkdArQESUA1ejXV9lChoBmgJaA9DCAQ7/gsE4QPAlIaUUpRoFUsyaBZHQK0C+XsPatd1fZQoaAZoCWgPQwjA0CNGzw0RwJSGlFKUaBVLMmgWR0CtArX6ZYxMdX2UKGgGaAloD0MIrTB9ryG4EsCUhpRSlGgVSzJoFkdArQJzeVLSNXV9lChoBmgJaA9DCHP3OT5a3ArAlIaUUpRoFUsyaBZHQK0CMXiR4hV1fZQoaAZoCWgPQwjl0CLb+S4SwJSGlFKUaBVLMmgWR0CtBBRCx/utdX2UKGgGaAloD0MIxCRcyCMYEMCUhpRSlGgVSzJoFkdArQPQB1cMVnV9lChoBmgJaA9DCMlxp3SwvhDAlIaUUpRoFUsyaBZHQK0DjZ2ZApt1fZQoaAZoCWgPQwjF46JaRJQQwJSGlFKUaBVLMmgWR0CtA0uyVv/BdX2UKGgGaAloD0MIUBvV6UB2E8CUhpRSlGgVSzJoFkdArQUvHLida3V9lChoBmgJaA9DCL4tWKoLOP2/lIaUUpRoFUsyaBZHQK0E6skIHC51fZQoaAZoCWgPQwihSs0eaMUOwJSGlFKUaBVLMmgWR0CtBKg6dUbUdX2UKGgGaAloD0MIzGPNyCCXFsCUhpRSlGgVSzJoFkdArQRmZZ0Sy3V9lChoBmgJaA9DCDPfwU8cIBHAlIaUUpRoFUsyaBZHQK0GfU1AJLN1fZQoaAZoCWgPQwjVlGQdjp4RwJSGlFKUaBVLMmgWR0CtBjm5DqnndX2UKGgGaAloD0MIyLJg4o9iBsCUhpRSlGgVSzJoFkdArQX42jwhGHV9lChoBmgJaA9DCEevBigNtRPAlIaUUpRoFUsyaBZHQK0Ft9GZuyh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8df372f160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8df3728600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676074952829145953, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsozRPj+JjLwv7RY/sozRPj+JjLwv7RY/sozRPj+JjLwv7RY/sozRPj+JjLwv7RY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/Tpxvwnxz79D6tI/ltPPv3mBpr4ShKE/gEGUv6EOsb7NX8E9kS62PztJIL8vYk0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACyjNE+P4mMvC/tFj86SWA8DfyGuhdqHjyyjNE+P4mMvC/tFj86SWA8DfyGuhdqHjyyjNE+P4mMvC/tFj86SWA8DfyGuhdqHjyyjNE+P4mMvC/tFj86SWA8DfyGuhdqHjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40927655 -0.01715529 0.58955663]\n [ 0.40927655 -0.01715529 0.58955663]\n [ 0.40927655 -0.01715529 0.58955663]\n [ 0.40927655 -0.01715529 0.58955663]]", "desired_goal": "[[-0.94230634 -1.6245433 1.6477741 ]\n [-1.6236446 -0.32520655 1.261843 ]\n [-1.1582489 -0.34581473 0.09442101]\n [ 1.4232961 -0.6261174 0.8022794 ]]", "observation": "[[ 0.40927655 -0.01715529 0.58955663 0.01368933 -0.00102985 0.00966885]\n [ 0.40927655 -0.01715529 0.58955663 0.01368933 -0.00102985 0.00966885]\n [ 0.40927655 -0.01715529 0.58955663 0.01368933 -0.00102985 0.00966885]\n [ 0.40927655 -0.01715529 0.58955663 0.01368933 -0.00102985 0.00966885]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgLGXvBnGobzzgYk+aMWKvVlzm73ECFY+Y2qSvUfB573bxpA+F1LXPao4sr22KFo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01851726 -0.01974778 0.26856956]\n [-0.06775934 -0.0759036 0.20901781]\n [-0.07149198 -0.11316162 0.28276715]\n [ 0.10513704 -0.08702214 0.21304592]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXVDfMqdLAsCUhpRSlIwBbJRLMowBdJRHQKas29lEqlR1fZQoaAZoCWgPQwjMYfcdwwMlwJSGlFKUaBVLMmgWR0CmrJ8JtzjndX2UKGgGaAloD0MIgqynVl+tI8CUhpRSlGgVSzJoFkdApqxijesPrnV9lChoBmgJaA9DCCMUW0HTkizAlIaUUpRoFUsyaBZHQKasJm+TNdJ1fZQoaAZoCWgPQwiZvAFmvgMCwJSGlFKUaBVLMmgWR0Cmrd96sySFdX2UKGgGaAloD0MItOVciquK/b+UhpRSlGgVSzJoFkdApq2ix/ustHV9lChoBmgJaA9DCInS3uALeyPAlIaUUpRoFUsyaBZHQKatZj5Kvmp1fZQoaAZoCWgPQwgkC5jArZsCwJSGlFKUaBVLMmgWR0CmrSoRh+fAdX2UKGgGaAloD0MIEmdF1ESfEcCUhpRSlGgVSzJoFkdApq7pwXIlt3V9lChoBmgJaA9DCLiQR3AjZQjAlIaUUpRoFUsyaBZHQKaurMfRu0l1fZQoaAZoCWgPQwgv3/qw3pgfwJSGlFKUaBVLMmgWR0CmrnBFEy+IdX2UKGgGaAloD0MIfjmzXaG3IcCUhpRSlGgVSzJoFkdApq40G/vfCXV9lChoBmgJaA9DCLsNar+18wDAlIaUUpRoFUsyaBZHQKav8R7qptJ1fZQoaAZoCWgPQwhi83FtqCgfwJSGlFKUaBVLMmgWR0Cmr7RJVbRndX2UKGgGaAloD0MIj+OHSiOmEcCUhpRSlGgVSzJoFkdApq933JxNqXV9lChoBmgJaA9DCItUGFsIUhTAlIaUUpRoFUsyaBZHQKavO7SRbKR1fZQoaAZoCWgPQwg0SMFTyJ0iwJSGlFKUaBVLMmgWR0CmsPqLKmsOdX2UKGgGaAloD0MIA83n3O2KG8CUhpRSlGgVSzJoFkdAprC+hTOxB3V9lChoBmgJaA9DCP+R6dDpWQbAlIaUUpRoFUsyaBZHQKawgpXp4bF1fZQoaAZoCWgPQwgBipElcyz6v5SGlFKUaBVLMmgWR0CmsEc/dIoWdX2UKGgGaAloD0MIjfFh9rKdEMCUhpRSlGgVSzJoFkdAprINCeEqUnV9lChoBmgJaA9DCHWsUnqmxxPAlIaUUpRoFUsyaBZHQKax0F23azx1fZQoaAZoCWgPQwicacL2k4EgwJSGlFKUaBVLMmgWR0CmsZQNb1RMdX2UKGgGaAloD0MIkSdJ10y+CcCUhpRSlGgVSzJoFkdAprFX6GgzxnV9lChoBmgJaA9DCIv6JHfYRPe/lIaUUpRoFUsyaBZHQKazEOvt+kR1fZQoaAZoCWgPQwgK8x5nmiAZwJSGlFKUaBVLMmgWR0CmstQBo24vdX2UKGgGaAloD0MIofMau0TdIcCUhpRSlGgVSzJoFkdAprKXjS5RTHV9lChoBmgJaA9DCDaU2otoO/2/lIaUUpRoFUsyaBZHQKayW2Ifr8l1fZQoaAZoCWgPQwi3mQrxSDwGwJSGlFKUaBVLMmgWR0CmtCDsUqQSdX2UKGgGaAloD0MI4V6Zt+rqHsCUhpRSlGgVSzJoFkdAprPkFINEw3V9lChoBmgJaA9DCMaGbvYHihTAlIaUUpRoFUsyaBZHQKazp4/NZ/11fZQoaAZoCWgPQwg74SU49VESwJSGlFKUaBVLMmgWR0Cms2t+1Bt2dX2UKGgGaAloD0MIvk9VoYFY/7+UhpRSlGgVSzJoFkdAprUqNEPUa3V9lChoBmgJaA9DCJBq2O+JRRzAlIaUUpRoFUsyaBZHQKa07VoYekp1fZQoaAZoCWgPQwgoLVxWYUMRwJSGlFKUaBVLMmgWR0CmtLDifg76dX2UKGgGaAloD0MImN2Th4UKIMCUhpRSlGgVSzJoFkdAprR01fmcOXV9lChoBmgJaA9DCEFmZ9E79Q/AlIaUUpRoFUsyaBZHQKa2P1cMVlB1fZQoaAZoCWgPQwhSSDKrdxgWwJSGlFKUaBVLMmgWR0CmtgKcVgx8dX2UKGgGaAloD0MIww5j0t/jIsCUhpRSlGgVSzJoFkdAprXGN5t3wHV9lChoBmgJaA9DCPLs8q0P6y7AlIaUUpRoFUsyaBZHQKa1iiaiKzl1fZQoaAZoCWgPQwiIE5hO6/YXwJSGlFKUaBVLMmgWR0Cmt02St/4JdX2UKGgGaAloD0MIVRaFXRQlJsCUhpRSlGgVSzJoFkdAprcQ7gbZOHV9lChoBmgJaA9DCD19BP7wsyDAlIaUUpRoFUsyaBZHQKa21IgeRxN1fZQoaAZoCWgPQwi3JAfsavojwJSGlFKUaBVLMmgWR0Cmtph7NSqEdX2UKGgGaAloD0MIyLYMOEsJGcCUhpRSlGgVSzJoFkdAprhc0m+j/XV9lChoBmgJaA9DCLFqEOZ2rwHAlIaUUpRoFUsyaBZHQKa4H/Lkjop1fZQoaAZoCWgPQwhjJlEv+LwjwJSGlFKUaBVLMmgWR0Cmt+OXmeUZdX2UKGgGaAloD0MI6gPJO4cyEMCUhpRSlGgVSzJoFkdAprenaYeDF3V9lChoBmgJaA9DCFab/1cdySTAlIaUUpRoFUsyaBZHQKa5ajrzGxV1fZQoaAZoCWgPQwhdTgmISTgTwJSGlFKUaBVLMmgWR0CmuS11GLDRdX2UKGgGaAloD0MI1LfM6bJgI8CUhpRSlGgVSzJoFkdAprjw9gWrO3V9lChoBmgJaA9DCIi7ehUZXRXAlIaUUpRoFUsyaBZHQKa4tNcGC7N1fZQoaAZoCWgPQwjr/rEQHaIkwJSGlFKUaBVLMmgWR0Cmum1y/9HddX2UKGgGaAloD0MI1qvI6IBk/7+UhpRSlGgVSzJoFkdAprowX2ugYnV9lChoBmgJaA9DCBQgCmZMAQnAlIaUUpRoFUsyaBZHQKa588RL9Mt1fZQoaAZoCWgPQwh8fhghPIoYwJSGlFKUaBVLMmgWR0CmubefAbhndX2UKGgGaAloD0MI/yPTodMjLMCUhpRSlGgVSzJoFkdAprtqDPGACnV9lChoBmgJaA9DCBZQqKePYAXAlIaUUpRoFUsyaBZHQKa7LSP2f051fZQoaAZoCWgPQwg2rn/XZ/4TwJSGlFKUaBVLMmgWR0CmuvC3G4qgdX2UKGgGaAloD0MI9KRMamgDAcCUhpRSlGgVSzJoFkdAprq0jiXIEXV9lChoBmgJaA9DCD7QCgxZPQ/AlIaUUpRoFUsyaBZHQKa8e/X5FgF1fZQoaAZoCWgPQwjku5S6ZNQqwJSGlFKUaBVLMmgWR0CmvD8/MW43dX2UKGgGaAloD0MIySB3EaZwKMCUhpRSlGgVSzJoFkdAprwC08eS0XV9lChoBmgJaA9DCMFXdOs1JSnAlIaUUpRoFUsyaBZHQKa7xrcj7hx1fZQoaAZoCWgPQwiHvyZr1FskwJSGlFKUaBVLMmgWR0CmvX+fh/AkdX2UKGgGaAloD0MIODKP/MFADcCUhpRSlGgVSzJoFkdApr1C1eBxxXV9lChoBmgJaA9DCC6M9KJ2TyTAlIaUUpRoFUsyaBZHQKa9Bnf2saN1fZQoaAZoCWgPQwjey31yFEARwJSGlFKUaBVLMmgWR0CmvMpFCswMdX2UKGgGaAloD0MIm3YxzXTPE8CUhpRSlGgVSzJoFkdApr6PUF0PpnV9lChoBmgJaA9DCH4dOGdE6RbAlIaUUpRoFUsyaBZHQKa+Umplz2h1fZQoaAZoCWgPQwgddXRcjaQswJSGlFKUaBVLMmgWR0CmvhYJNTLodX2UKGgGaAloD0MIfqoKDcSy+7+UhpRSlGgVSzJoFkdApr3aBXjlxXV9lChoBmgJaA9DCFa3ek56bx7AlIaUUpRoFUsyaBZHQKa/wGGEf1Z1fZQoaAZoCWgPQwhKCcGqenElwJSGlFKUaBVLMmgWR0Cmv4Q+UyHmdX2UKGgGaAloD0MICf63kh07G8CUhpRSlGgVSzJoFkdApr9IjrzGxXV9lChoBmgJaA9DCNVCyeTUzgvAlIaUUpRoFUsyaBZHQKa/DVBlcyF1fZQoaAZoCWgPQwiG5GTiVmEvwJSGlFKUaBVLMmgWR0CmwYgS39aVdX2UKGgGaAloD0MI0NIVbCPuEsCUhpRSlGgVSzJoFkdApsFMHMUypXV9lChoBmgJaA9DCAK8BRIUbx3AlIaUUpRoFUsyaBZHQKbBEHE/B311fZQoaAZoCWgPQwgx0LUvoI8kwJSGlFKUaBVLMmgWR0CmwNU/W1+idX2UKGgGaAloD0MIB7ZKsDhsG8CUhpRSlGgVSzJoFkdApsNS1PWQOnV9lChoBmgJaA9DCBlYx/FDxSfAlIaUUpRoFUsyaBZHQKbDFxe9i+d1fZQoaAZoCWgPQwhffNEeL1QcwJSGlFKUaBVLMmgWR0CmwtuBtk4FdX2UKGgGaAloD0MI8MSsF0NZC8CUhpRSlGgVSzJoFkdApsKgMYuTR3V9lChoBmgJaA9DCKmI00m2WhDAlIaUUpRoFUsyaBZHQKbFGi35N491fZQoaAZoCWgPQwga4e1BCMgtwJSGlFKUaBVLMmgWR0CmxN41P3zudX2UKGgGaAloD0MIwhN6/UmsFMCUhpRSlGgVSzJoFkdApsSiuEEkjXV9lChoBmgJaA9DCCmTGtoAfCPAlIaUUpRoFUsyaBZHQKbEZ2xIJ7d1fZQoaAZoCWgPQwifBaG8j4MQwJSGlFKUaBVLMmgWR0CmxuGRvFWGdX2UKGgGaAloD0MIdLaA0HpYKcCUhpRSlGgVSzJoFkdApsalzhgmZ3V9lChoBmgJaA9DCMmP+BVrUCfAlIaUUpRoFUsyaBZHQKbGainpB5Z1fZQoaAZoCWgPQwh88rBQa6omwJSGlFKUaBVLMmgWR0Cmxi7XHzYmdX2UKGgGaAloD0MIYfpeQ3CsLMCUhpRSlGgVSzJoFkdApsjMAksz23V9lChoBmgJaA9DCOHQWzy8ZwfAlIaUUpRoFUsyaBZHQKbIkByS3b51fZQoaAZoCWgPQwiAYmTJHEMpwJSGlFKUaBVLMmgWR0CmyFTaTOgQdX2UKGgGaAloD0MIZfz7jAv3KsCUhpRSlGgVSzJoFkdApsgZltj0+XV9lChoBmgJaA9DCDbNO07RgR7AlIaUUpRoFUsyaBZHQKbKJIuoP091fZQoaAZoCWgPQwgC2evdH6ciwJSGlFKUaBVLMmgWR0CmyefACW/rdX2UKGgGaAloD0MIHqm+84tCHsCUhpRSlGgVSzJoFkdApsmrSkTHsHV9lChoBmgJaA9DCJ9XPPVIowfAlIaUUpRoFUsyaBZHQKbJbx4IKMN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -4.549411470582709, "std_reward": 1.0261966998261256, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-10T20:35:49.529590"}
 
1
+ {"mean_reward": -6.010739269200712, "std_reward": 3.4270554084778686, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-11T01:11:08.684460"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ac131e2ca4298d2c6d440fdfc2bd71921cd31bb7b946b049fe4efa160a52d648
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ed9806e006666528fa944e673c57dddf3f2a404d294d7c9fe33bafb983b33c6
3
  size 3056