Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1834.37 +/- 143.86
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d020f76735d2e0ab386cf0302527531a127f88ce1892de8a6d44651df10ebab4
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6fbf20b040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6fbf20b0d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6fbf20b160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6fbf20b1f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6fbf20b280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6fbf20b310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6fbf20b3a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6fbf20b430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6fbf20b4c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6fbf20b550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6fbf20b5e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6fbf20b670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6fbf208b80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679205170906049556,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD4GDr+hrDo8UXAIP3mlk7/sRPE+lQmtPsenD0D47XQ+S0rVvl/9ybxzTEq/F6JNv1B6yL+Qq669eOcIwD2cx72NnPu/7IQyO++6GD9/kLU7jXDRPZnEgr6/L4G/O/YgvBaPY7/3qAU/pr3nPmgqTz9jVgO+qIlKPgps7j7zcck/PahVPgAhej4/GRy/inrUPgHyjT+sX8w98nT1vYrPtz6p3tu/ft2hPjfI0j1N3CW/EyIoPzcci74cww6/rjeOP49ypD+1vRZA8z1tv77nAz50/48/ySj1v6a95z5FLJ6/lMo0P7n7MMCTembAZMV6P4+SQT/rycY//V0NwIfB5b9Guts9BOTgvQ0o0z+a8jVAIT7gv7aYVT4Vr10/fYaOvv6RaL5055G/+z8Lv4W63j+HwK4/UeCXvjcygL8xqjc9Fo9jv/eoBT+mvec+RSyev9RKST8/ldW+wQoVP6romT+FqqU+IJWsP5aWMD+LajS/NBBUvvAv3j+FxFw+UTOPPjvqIr3Xt9o/NlwQv/o2Kz962YA+g3//P6hlGT8gm5m8zTerv/mvNL4qEmo+Ll+APRaPY7/3qAU/pr3nPmgqTz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAx1rE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkJIKvgAAAADqPADAAAAAAOnDD7wAAAAAAl/cPwAAAAByw6U8AAAAAJ3J3T8AAAAA13uavQAAAACCOee/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjzyEtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDpWqT0AAAAAOx3kvwAAAABx0Q4+AAAAAEo6AEAAAAAAreXOvQAAAABJ1v4/AAAAADq2AD4AAAAAlSDmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwgObYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJRfQ9AAAAAOoa5b8AAAAAZUEFPQAAAABxyek/AAAAAIp3nD0AAAAAzqLaPwAAAACe29c9AAAAAP7m3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmCrE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvhI8vQAAAADXDee/AAAAAMx7vj0AAAAATUv4PwAAAADZ89Q8AAAAAGJq3D8AAAAAEqJ5vQAAAACPMfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtDPhYNiH+MAWyUTegDjAF0lEdAqcQp6F/QSnV9lChoBkdAnVU4EKVpsWgHTegDaAhHQKnGYDZDiOx1fZQoaAZHQJ7IjrWy1NRoB03oA2gIR0CpxpO0b961dX2UKGgGR0CW5TFAE+xGaAdN6ANoCEdAqc8BiG34K3V9lChoBkdAnAvdGNJe3WgHTegDaAhHQKnTWTewcHZ1fZQoaAZHQJzho4ACGN9oB03oA2gIR0Cp1Y/nwG4adX2UKGgGR0CZ4/Th5xBFaAdN6ANoCEdAqdW4HJLdvnV9lChoBkdAmlIGBas6rGgHTegDaAhHQKnbOKNyYHB1fZQoaAZHQJ0CnguRLbpoB03oA2gIR0Cp3vMbWEsbdX2UKGgGR0CWo2AtWdVeaAdN6ANoCEdAqeEs0gr6L3V9lChoBkdAlt3AV0tAcGgHTegDaAhHQKnhU90Rvm51fZQoaAZHQJoXJ/mT1TRoB03oA2gIR0Cp5/uJ+DvmdX2UKGgGR0CZqzrcCYCyaAdN6ANoCEdAqe3N69kBjnV9lChoBkdAmV19XcQAdWgHTegDaAhHQKnwZExZdOZ1fZQoaAZHQJ6zRnuiN85oB03oA2gIR0Cp8Iu/L1VYdX2UKGgGR0CagPTURWcSaAdN6ANoCEdAqfYnUhFEzHV9lChoBkdAl30iQYDT0GgHTegDaAhHQKn59IczZYh1fZQoaAZHQJWoHhJiAlRoB03oA2gIR0Cp/D3lr/KhdX2UKGgGR0CbyrCOFQEZaAdN6ANoCEdAqfxjtVrAQHV9lChoBkdAmdsHQyAQQWgHTegDaAhHQKoCFOVPepJ1fZQoaAZHQJQZ2WQfZEloB03oA2gIR0CqB4RNRFZxdX2UKGgGR0CY+cagElmfaAdN6ANoCEdAqgsSzu4PPXV9lChoBkdAl5SJDArQPmgHTegDaAhHQKoLUBFuvU11fZQoaAZHQJ26W08eS0VoB03oA2gIR0CqEayLqD9PdX2UKGgGR0Ced/wcHWz4aAdN6ANoCEdAqhV3zg/C7HV9lChoBkdAnRosByS3b2gHTegDaAhHQKoXvzq8lHB1fZQoaAZHQKCof4DcM3JoB03oA2gIR0CqF+ex4Y78dX2UKGgGR0CRWknF5v9+aAdN6ANoCEdAqh3IxDb8FnV9lChoBkdAlsX8enyd4GgHTegDaAhHQKoh+3kPtlZ1fZQoaAZHQJtctqtYB/9oB03oA2gIR0CqJTLC3w1BdX2UKGgGR0CVw5/giu+zaAdN6ANoCEdAqiVwX/HYH3V9lChoBkdAm0yrZWaMJmgHTegDaAhHQKotCZBLPD51fZQoaAZHQJT2Ub4rSVpoB03oA2gIR0CqML9S/CZXdX2UKGgGR0CbuWirT6SDaAdN6ANoCEdAqjL4NZvDQHV9lChoBkdAncVzDO1OTWgHTegDaAhHQKozHd6cAip1fZQoaAZHQJpCNWzWwvBoB03oA2gIR0CqOKuH31zydX2UKGgGR0CZ4SeV9nbqaAdN6ANoCEdAqjxwL3K0U3V9lChoBkdAnbPO3H7xeGgHTegDaAhHQKo+rmlqJuV1fZQoaAZHQJkw61gH/tJoB03oA2gIR0CqPte9Ba9sdX2UKGgGR0CcRLbVBlcyaAdN6ANoCEdAqkcP9BKL9HV9lChoBkdAnLbVRHf/FWgHTegDaAhHQKpLoacZtN11fZQoaAZHQJik1lCkXUJoB03oA2gIR0CqTc6Df3vhdX2UKGgGR0CcOwDbJwKjaAdN6ANoCEdAqk34KjSG8HV9lChoBkdAnCkLA+IM0GgHTegDaAhHQKpTlkEs8Pp1fZQoaAZHQJbPkJswco9oB03oA2gIR0CqV1VK5CnhdX2UKGgGR0CZvmIfKZDzaAdN6ANoCEdAqlmO1pj+aXV9lChoBkdAmheM2itaIWgHTegDaAhHQKpZthz/6wd1fZQoaAZHQIV11eWv8qFoB03oA2gIR0CqYEbUXpGGdX2UKGgGR0CPhjZSvTw2aAdN6ANoCEdAqmYod8zAOHV9lChoBkdAmIzCr1dxAGgHTegDaAhHQKpo2Aqd6LR1fZQoaAZHQJbwgZLqUvBoB03oA2gIR0CqaQBInSfEdX2UKGgGR0CcM67ALy+YaAdN6ANoCEdAqm6GDDjzZ3V9lChoBkdAlrI+XqqwQmgHTegDaAhHQKpyShvitJZ1fZQoaAZHQJiWLybx3FFoB03oA2gIR0CqdIs8gZCOdX2UKGgGR0CW9p1ct5D7aAdN6ANoCEdAqnSymMwUQHV9lChoBkdAmdCPoFFDv2gHTegDaAhHQKp6Ur4Fia11fZQoaAZHQJXkg/3WWhRoB03oA2gIR0Cqf30+LWI5dX2UKGgGR0CUnZgDRtxdaAdN6ANoCEdAqoL5lcyFf3V9lChoBkdAmFsoAbQ1JmgHTegDaAhHQKqDNZBcAzZ1fZQoaAZHQJuAN+nZTQ5oB03oA2gIR0Cqic1dX1aodX2UKGgGR0CPba1aW5YpaAdN6ANoCEdAqo2ejwhGIHV9lChoBkdAlsfC0BwMpmgHTegDaAhHQKqP/HGS6lN1fZQoaAZHQJe07HPu5SZoB03oA2gIR0CqkCag2606dX2UKGgGR0CYsfQ0XP7faAdN6ANoCEdAqpXB60IC2nV9lChoBkdAksStZNfw7WgHTegDaAhHQKqZk3sHB1t1fZQoaAZHQJeg4FRpDeFoB03oA2gIR0CqnN+lCTlldX2UKGgGR0CW4PlDWsijaAdN6ANoCEdAqp0XkaMrE3V9lChoBkdAk8S6a1Cw8mgHTegDaAhHQKqlFiG34Kx1fZQoaAZHQJXYSouPFNtoB03oA2gIR0CqqOmr8zhxdX2UKGgGR0CXhBLM9r44aAdN6ANoCEdAqqsuldkauXV9lChoBkdAiKmnSOR1YGgHTegDaAhHQKqrVaJyhi91fZQoaAZHQJL+9yDIzWRoB03oA2gIR0CqsOiA2AG0dX2UKGgGR0CY6aSjgydnaAdN6ANoCEdAqrSzhtLteHV9lChoBkdAmBRdmcvugGgHTegDaAhHQKq29o6CDmN1fZQoaAZHQJ1DCeEqUeNoB03oA2gIR0Cqtx207bL2dX2UKGgGR0CbLqI9TxXoaAdN6ANoCEdAqr80KRdQf3V9lChoBkdAltTNXko4MmgHTegDaAhHQKrD/b0voNd1fZQoaAZHQJTSl3V09yNoB03oA2gIR0CqxjXPZ7HAdX2UKGgGR0CRPBXAuZkTaAdN6ANoCEdAqsZdcdHUdHV9lChoBkdAnLaAj+rEL2gHTegDaAhHQKrL8dSVGCt1fZQoaAZHQJfcFzo2XLNoB03oA2gIR0Cqz6spgCwKdX2UKGgGR0CcA6bfgrH3aAdN6ANoCEdAqtH0L2HtW3V9lChoBkdAjUB3iiqQzWgHTegDaAhHQKrSIGt6ol51fZQoaAZHQJiNnOLR8dBoB03oA2gIR0Cq2Ge67NB4dX2UKGgGR0Cbh1QP7N0OaAdN6ANoCEdAqt4TGPxQSHV9lChoBkdAl3XquKXOW2gHTegDaAhHQKrhFBJI1+B1fZQoaAZHQJfVMGRmseZoB03oA2gIR0Cq4TuXVsk6dX2UKGgGR0CYWj6mwaBJaAdN6ANoCEdAqubGLR8c/HV9lChoBkdAmOTK+evpyWgHTegDaAhHQKrqm3qAz551fZQoaAZHQJZ/R1hb4ahoB03oA2gIR0Cq7O5sCT2WdX2UKGgGR0CUxGr6LwWnaAdN6ANoCEdAqu0Vcv/R3XV9lChoBkdAl0wkoBq9G2gHTegDaAhHQKrytdj5Kvp1fZQoaAZHQJnrrrOZ9eBoB03oA2gIR0Cq93c7QswtdX2UKGgGR0CUkxu7HyVfaAdN6ANoCEdAqvrjvPTodXV9lChoBkdAmVtnsXzlLmgHTegDaAhHQKr7IEFnqV11fZQoaAZHQJr/xMxoIv9oB03oA2gIR0CrAevKMefadX2UKGgGR0CYham5DqnnaAdN6ANoCEdAqwXR+QU5/HV9lChoBkdAlGxaSHM2WWgHTegDaAhHQKsIFR3u/lB1fZQoaAZHQJm0z4fwI+poB03oA2gIR0CrCD42S+xodX2UKGgGR0CdBWKTjebeaAdN6ANoCEdAqw3g3T/hl3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44acbbd3a558fa712e8bbe52e9846228f58cf0e6d8c8ab459e729037aea8ce62
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:509ed55707fbb86a9316104848bd80e47c7f035859c40aba88ee962e308cab64
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6fbf20b040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6fbf20b0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6fbf20b160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6fbf20b1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f6fbf20b280>", "forward": "<function ActorCriticPolicy.forward at 0x7f6fbf20b310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6fbf20b3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6fbf20b430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6fbf20b4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6fbf20b550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6fbf20b5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6fbf20b670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6fbf208b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679205170906049556, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD4GDr+hrDo8UXAIP3mlk7/sRPE+lQmtPsenD0D47XQ+S0rVvl/9ybxzTEq/F6JNv1B6yL+Qq669eOcIwD2cx72NnPu/7IQyO++6GD9/kLU7jXDRPZnEgr6/L4G/O/YgvBaPY7/3qAU/pr3nPmgqTz9jVgO+qIlKPgps7j7zcck/PahVPgAhej4/GRy/inrUPgHyjT+sX8w98nT1vYrPtz6p3tu/ft2hPjfI0j1N3CW/EyIoPzcci74cww6/rjeOP49ypD+1vRZA8z1tv77nAz50/48/ySj1v6a95z5FLJ6/lMo0P7n7MMCTembAZMV6P4+SQT/rycY//V0NwIfB5b9Guts9BOTgvQ0o0z+a8jVAIT7gv7aYVT4Vr10/fYaOvv6RaL5055G/+z8Lv4W63j+HwK4/UeCXvjcygL8xqjc9Fo9jv/eoBT+mvec+RSyev9RKST8/ldW+wQoVP6romT+FqqU+IJWsP5aWMD+LajS/NBBUvvAv3j+FxFw+UTOPPjvqIr3Xt9o/NlwQv/o2Kz962YA+g3//P6hlGT8gm5m8zTerv/mvNL4qEmo+Ll+APRaPY7/3qAU/pr3nPmgqTz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAx1rE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkJIKvgAAAADqPADAAAAAAOnDD7wAAAAAAl/cPwAAAAByw6U8AAAAAJ3J3T8AAAAA13uavQAAAACCOee/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjzyEtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDpWqT0AAAAAOx3kvwAAAABx0Q4+AAAAAEo6AEAAAAAAreXOvQAAAABJ1v4/AAAAADq2AD4AAAAAlSDmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwgObYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJRfQ9AAAAAOoa5b8AAAAAZUEFPQAAAABxyek/AAAAAIp3nD0AAAAAzqLaPwAAAACe29c9AAAAAP7m3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmCrE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvhI8vQAAAADXDee/AAAAAMx7vj0AAAAATUv4PwAAAADZ89Q8AAAAAGJq3D8AAAAAEqJ5vQAAAACPMfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtDPhYNiH+MAWyUTegDjAF0lEdAqcQp6F/QSnV9lChoBkdAnVU4EKVpsWgHTegDaAhHQKnGYDZDiOx1fZQoaAZHQJ7IjrWy1NRoB03oA2gIR0CpxpO0b961dX2UKGgGR0CW5TFAE+xGaAdN6ANoCEdAqc8BiG34K3V9lChoBkdAnAvdGNJe3WgHTegDaAhHQKnTWTewcHZ1fZQoaAZHQJzho4ACGN9oB03oA2gIR0Cp1Y/nwG4adX2UKGgGR0CZ4/Th5xBFaAdN6ANoCEdAqdW4HJLdvnV9lChoBkdAmlIGBas6rGgHTegDaAhHQKnbOKNyYHB1fZQoaAZHQJ0CnguRLbpoB03oA2gIR0Cp3vMbWEsbdX2UKGgGR0CWo2AtWdVeaAdN6ANoCEdAqeEs0gr6L3V9lChoBkdAlt3AV0tAcGgHTegDaAhHQKnhU90Rvm51fZQoaAZHQJoXJ/mT1TRoB03oA2gIR0Cp5/uJ+DvmdX2UKGgGR0CZqzrcCYCyaAdN6ANoCEdAqe3N69kBjnV9lChoBkdAmV19XcQAdWgHTegDaAhHQKnwZExZdOZ1fZQoaAZHQJ6zRnuiN85oB03oA2gIR0Cp8Iu/L1VYdX2UKGgGR0CagPTURWcSaAdN6ANoCEdAqfYnUhFEzHV9lChoBkdAl30iQYDT0GgHTegDaAhHQKn59IczZYh1fZQoaAZHQJWoHhJiAlRoB03oA2gIR0Cp/D3lr/KhdX2UKGgGR0CbyrCOFQEZaAdN6ANoCEdAqfxjtVrAQHV9lChoBkdAmdsHQyAQQWgHTegDaAhHQKoCFOVPepJ1fZQoaAZHQJQZ2WQfZEloB03oA2gIR0CqB4RNRFZxdX2UKGgGR0CY+cagElmfaAdN6ANoCEdAqgsSzu4PPXV9lChoBkdAl5SJDArQPmgHTegDaAhHQKoLUBFuvU11fZQoaAZHQJ26W08eS0VoB03oA2gIR0CqEayLqD9PdX2UKGgGR0Ced/wcHWz4aAdN6ANoCEdAqhV3zg/C7HV9lChoBkdAnRosByS3b2gHTegDaAhHQKoXvzq8lHB1fZQoaAZHQKCof4DcM3JoB03oA2gIR0CqF+ex4Y78dX2UKGgGR0CRWknF5v9+aAdN6ANoCEdAqh3IxDb8FnV9lChoBkdAlsX8enyd4GgHTegDaAhHQKoh+3kPtlZ1fZQoaAZHQJtctqtYB/9oB03oA2gIR0CqJTLC3w1BdX2UKGgGR0CVw5/giu+zaAdN6ANoCEdAqiVwX/HYH3V9lChoBkdAm0yrZWaMJmgHTegDaAhHQKotCZBLPD51fZQoaAZHQJT2Ub4rSVpoB03oA2gIR0CqML9S/CZXdX2UKGgGR0CbuWirT6SDaAdN6ANoCEdAqjL4NZvDQHV9lChoBkdAncVzDO1OTWgHTegDaAhHQKozHd6cAip1fZQoaAZHQJpCNWzWwvBoB03oA2gIR0CqOKuH31zydX2UKGgGR0CZ4SeV9nbqaAdN6ANoCEdAqjxwL3K0U3V9lChoBkdAnbPO3H7xeGgHTegDaAhHQKo+rmlqJuV1fZQoaAZHQJkw61gH/tJoB03oA2gIR0CqPte9Ba9sdX2UKGgGR0CcRLbVBlcyaAdN6ANoCEdAqkcP9BKL9HV9lChoBkdAnLbVRHf/FWgHTegDaAhHQKpLoacZtN11fZQoaAZHQJik1lCkXUJoB03oA2gIR0CqTc6Df3vhdX2UKGgGR0CcOwDbJwKjaAdN6ANoCEdAqk34KjSG8HV9lChoBkdAnCkLA+IM0GgHTegDaAhHQKpTlkEs8Pp1fZQoaAZHQJbPkJswco9oB03oA2gIR0CqV1VK5CnhdX2UKGgGR0CZvmIfKZDzaAdN6ANoCEdAqlmO1pj+aXV9lChoBkdAmheM2itaIWgHTegDaAhHQKpZthz/6wd1fZQoaAZHQIV11eWv8qFoB03oA2gIR0CqYEbUXpGGdX2UKGgGR0CPhjZSvTw2aAdN6ANoCEdAqmYod8zAOHV9lChoBkdAmIzCr1dxAGgHTegDaAhHQKpo2Aqd6LR1fZQoaAZHQJbwgZLqUvBoB03oA2gIR0CqaQBInSfEdX2UKGgGR0CcM67ALy+YaAdN6ANoCEdAqm6GDDjzZ3V9lChoBkdAlrI+XqqwQmgHTegDaAhHQKpyShvitJZ1fZQoaAZHQJiWLybx3FFoB03oA2gIR0CqdIs8gZCOdX2UKGgGR0CW9p1ct5D7aAdN6ANoCEdAqnSymMwUQHV9lChoBkdAmdCPoFFDv2gHTegDaAhHQKp6Ur4Fia11fZQoaAZHQJXkg/3WWhRoB03oA2gIR0Cqf30+LWI5dX2UKGgGR0CUnZgDRtxdaAdN6ANoCEdAqoL5lcyFf3V9lChoBkdAmFsoAbQ1JmgHTegDaAhHQKqDNZBcAzZ1fZQoaAZHQJuAN+nZTQ5oB03oA2gIR0Cqic1dX1aodX2UKGgGR0CPba1aW5YpaAdN6ANoCEdAqo2ejwhGIHV9lChoBkdAlsfC0BwMpmgHTegDaAhHQKqP/HGS6lN1fZQoaAZHQJe07HPu5SZoB03oA2gIR0CqkCag2606dX2UKGgGR0CYsfQ0XP7faAdN6ANoCEdAqpXB60IC2nV9lChoBkdAksStZNfw7WgHTegDaAhHQKqZk3sHB1t1fZQoaAZHQJeg4FRpDeFoB03oA2gIR0CqnN+lCTlldX2UKGgGR0CW4PlDWsijaAdN6ANoCEdAqp0XkaMrE3V9lChoBkdAk8S6a1Cw8mgHTegDaAhHQKqlFiG34Kx1fZQoaAZHQJXYSouPFNtoB03oA2gIR0CqqOmr8zhxdX2UKGgGR0CXhBLM9r44aAdN6ANoCEdAqqsuldkauXV9lChoBkdAiKmnSOR1YGgHTegDaAhHQKqrVaJyhi91fZQoaAZHQJL+9yDIzWRoB03oA2gIR0CqsOiA2AG0dX2UKGgGR0CY6aSjgydnaAdN6ANoCEdAqrSzhtLteHV9lChoBkdAmBRdmcvugGgHTegDaAhHQKq29o6CDmN1fZQoaAZHQJ1DCeEqUeNoB03oA2gIR0Cqtx207bL2dX2UKGgGR0CbLqI9TxXoaAdN6ANoCEdAqr80KRdQf3V9lChoBkdAltTNXko4MmgHTegDaAhHQKrD/b0voNd1fZQoaAZHQJTSl3V09yNoB03oA2gIR0CqxjXPZ7HAdX2UKGgGR0CRPBXAuZkTaAdN6ANoCEdAqsZdcdHUdHV9lChoBkdAnLaAj+rEL2gHTegDaAhHQKrL8dSVGCt1fZQoaAZHQJfcFzo2XLNoB03oA2gIR0Cqz6spgCwKdX2UKGgGR0CcA6bfgrH3aAdN6ANoCEdAqtH0L2HtW3V9lChoBkdAjUB3iiqQzWgHTegDaAhHQKrSIGt6ol51fZQoaAZHQJiNnOLR8dBoB03oA2gIR0Cq2Ge67NB4dX2UKGgGR0Cbh1QP7N0OaAdN6ANoCEdAqt4TGPxQSHV9lChoBkdAl3XquKXOW2gHTegDaAhHQKrhFBJI1+B1fZQoaAZHQJfVMGRmseZoB03oA2gIR0Cq4TuXVsk6dX2UKGgGR0CYWj6mwaBJaAdN6ANoCEdAqubGLR8c/HV9lChoBkdAmOTK+evpyWgHTegDaAhHQKrqm3qAz551fZQoaAZHQJZ/R1hb4ahoB03oA2gIR0Cq7O5sCT2WdX2UKGgGR0CUxGr6LwWnaAdN6ANoCEdAqu0Vcv/R3XV9lChoBkdAl0wkoBq9G2gHTegDaAhHQKrytdj5Kvp1fZQoaAZHQJnrrrOZ9eBoB03oA2gIR0Cq93c7QswtdX2UKGgGR0CUkxu7HyVfaAdN6ANoCEdAqvrjvPTodXV9lChoBkdAmVtnsXzlLmgHTegDaAhHQKr7IEFnqV11fZQoaAZHQJr/xMxoIv9oB03oA2gIR0CrAevKMefadX2UKGgGR0CYham5DqnnaAdN6ANoCEdAqwXR+QU5/HV9lChoBkdAlGxaSHM2WWgHTegDaAhHQKsIFR3u/lB1fZQoaAZHQJm0z4fwI+poB03oA2gIR0CrCD42S+xodX2UKGgGR0CdBWKTjebeaAdN6ANoCEdAqw3g3T/hl3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93a6132a317b9a9bb6400048072db7694893dc1fa88338650ff5030ad85432e8
|
3 |
+
size 1132975
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1834.3720013338345, "std_reward": 143.85585367771992, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T06:53:48.664198"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66e7293972974efc37a500ee72f0e3709bf242f0acf4949d13b88f41c3488734
|
3 |
+
size 2136
|