yyq90 commited on
Commit
f59fe2c
·
1 Parent(s): 3d66fae

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1834.37 +/- 143.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d020f76735d2e0ab386cf0302527531a127f88ce1892de8a6d44651df10ebab4
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6fbf20b040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6fbf20b0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6fbf20b160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6fbf20b1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6fbf20b280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6fbf20b310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6fbf20b3a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6fbf20b430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6fbf20b4c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6fbf20b550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6fbf20b5e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6fbf20b670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6fbf208b80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679205170906049556,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD4GDr+hrDo8UXAIP3mlk7/sRPE+lQmtPsenD0D47XQ+S0rVvl/9ybxzTEq/F6JNv1B6yL+Qq669eOcIwD2cx72NnPu/7IQyO++6GD9/kLU7jXDRPZnEgr6/L4G/O/YgvBaPY7/3qAU/pr3nPmgqTz9jVgO+qIlKPgps7j7zcck/PahVPgAhej4/GRy/inrUPgHyjT+sX8w98nT1vYrPtz6p3tu/ft2hPjfI0j1N3CW/EyIoPzcci74cww6/rjeOP49ypD+1vRZA8z1tv77nAz50/48/ySj1v6a95z5FLJ6/lMo0P7n7MMCTembAZMV6P4+SQT/rycY//V0NwIfB5b9Guts9BOTgvQ0o0z+a8jVAIT7gv7aYVT4Vr10/fYaOvv6RaL5055G/+z8Lv4W63j+HwK4/UeCXvjcygL8xqjc9Fo9jv/eoBT+mvec+RSyev9RKST8/ldW+wQoVP6romT+FqqU+IJWsP5aWMD+LajS/NBBUvvAv3j+FxFw+UTOPPjvqIr3Xt9o/NlwQv/o2Kz962YA+g3//P6hlGT8gm5m8zTerv/mvNL4qEmo+Ll+APRaPY7/3qAU/pr3nPmgqTz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAx1rE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkJIKvgAAAADqPADAAAAAAOnDD7wAAAAAAl/cPwAAAAByw6U8AAAAAJ3J3T8AAAAA13uavQAAAACCOee/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjzyEtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDpWqT0AAAAAOx3kvwAAAABx0Q4+AAAAAEo6AEAAAAAAreXOvQAAAABJ1v4/AAAAADq2AD4AAAAAlSDmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwgObYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJRfQ9AAAAAOoa5b8AAAAAZUEFPQAAAABxyek/AAAAAIp3nD0AAAAAzqLaPwAAAACe29c9AAAAAP7m3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmCrE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvhI8vQAAAADXDee/AAAAAMx7vj0AAAAATUv4PwAAAADZ89Q8AAAAAGJq3D8AAAAAEqJ5vQAAAACPMfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtDPhYNiH+MAWyUTegDjAF0lEdAqcQp6F/QSnV9lChoBkdAnVU4EKVpsWgHTegDaAhHQKnGYDZDiOx1fZQoaAZHQJ7IjrWy1NRoB03oA2gIR0CpxpO0b961dX2UKGgGR0CW5TFAE+xGaAdN6ANoCEdAqc8BiG34K3V9lChoBkdAnAvdGNJe3WgHTegDaAhHQKnTWTewcHZ1fZQoaAZHQJzho4ACGN9oB03oA2gIR0Cp1Y/nwG4adX2UKGgGR0CZ4/Th5xBFaAdN6ANoCEdAqdW4HJLdvnV9lChoBkdAmlIGBas6rGgHTegDaAhHQKnbOKNyYHB1fZQoaAZHQJ0CnguRLbpoB03oA2gIR0Cp3vMbWEsbdX2UKGgGR0CWo2AtWdVeaAdN6ANoCEdAqeEs0gr6L3V9lChoBkdAlt3AV0tAcGgHTegDaAhHQKnhU90Rvm51fZQoaAZHQJoXJ/mT1TRoB03oA2gIR0Cp5/uJ+DvmdX2UKGgGR0CZqzrcCYCyaAdN6ANoCEdAqe3N69kBjnV9lChoBkdAmV19XcQAdWgHTegDaAhHQKnwZExZdOZ1fZQoaAZHQJ6zRnuiN85oB03oA2gIR0Cp8Iu/L1VYdX2UKGgGR0CagPTURWcSaAdN6ANoCEdAqfYnUhFEzHV9lChoBkdAl30iQYDT0GgHTegDaAhHQKn59IczZYh1fZQoaAZHQJWoHhJiAlRoB03oA2gIR0Cp/D3lr/KhdX2UKGgGR0CbyrCOFQEZaAdN6ANoCEdAqfxjtVrAQHV9lChoBkdAmdsHQyAQQWgHTegDaAhHQKoCFOVPepJ1fZQoaAZHQJQZ2WQfZEloB03oA2gIR0CqB4RNRFZxdX2UKGgGR0CY+cagElmfaAdN6ANoCEdAqgsSzu4PPXV9lChoBkdAl5SJDArQPmgHTegDaAhHQKoLUBFuvU11fZQoaAZHQJ26W08eS0VoB03oA2gIR0CqEayLqD9PdX2UKGgGR0Ced/wcHWz4aAdN6ANoCEdAqhV3zg/C7HV9lChoBkdAnRosByS3b2gHTegDaAhHQKoXvzq8lHB1fZQoaAZHQKCof4DcM3JoB03oA2gIR0CqF+ex4Y78dX2UKGgGR0CRWknF5v9+aAdN6ANoCEdAqh3IxDb8FnV9lChoBkdAlsX8enyd4GgHTegDaAhHQKoh+3kPtlZ1fZQoaAZHQJtctqtYB/9oB03oA2gIR0CqJTLC3w1BdX2UKGgGR0CVw5/giu+zaAdN6ANoCEdAqiVwX/HYH3V9lChoBkdAm0yrZWaMJmgHTegDaAhHQKotCZBLPD51fZQoaAZHQJT2Ub4rSVpoB03oA2gIR0CqML9S/CZXdX2UKGgGR0CbuWirT6SDaAdN6ANoCEdAqjL4NZvDQHV9lChoBkdAncVzDO1OTWgHTegDaAhHQKozHd6cAip1fZQoaAZHQJpCNWzWwvBoB03oA2gIR0CqOKuH31zydX2UKGgGR0CZ4SeV9nbqaAdN6ANoCEdAqjxwL3K0U3V9lChoBkdAnbPO3H7xeGgHTegDaAhHQKo+rmlqJuV1fZQoaAZHQJkw61gH/tJoB03oA2gIR0CqPte9Ba9sdX2UKGgGR0CcRLbVBlcyaAdN6ANoCEdAqkcP9BKL9HV9lChoBkdAnLbVRHf/FWgHTegDaAhHQKpLoacZtN11fZQoaAZHQJik1lCkXUJoB03oA2gIR0CqTc6Df3vhdX2UKGgGR0CcOwDbJwKjaAdN6ANoCEdAqk34KjSG8HV9lChoBkdAnCkLA+IM0GgHTegDaAhHQKpTlkEs8Pp1fZQoaAZHQJbPkJswco9oB03oA2gIR0CqV1VK5CnhdX2UKGgGR0CZvmIfKZDzaAdN6ANoCEdAqlmO1pj+aXV9lChoBkdAmheM2itaIWgHTegDaAhHQKpZthz/6wd1fZQoaAZHQIV11eWv8qFoB03oA2gIR0CqYEbUXpGGdX2UKGgGR0CPhjZSvTw2aAdN6ANoCEdAqmYod8zAOHV9lChoBkdAmIzCr1dxAGgHTegDaAhHQKpo2Aqd6LR1fZQoaAZHQJbwgZLqUvBoB03oA2gIR0CqaQBInSfEdX2UKGgGR0CcM67ALy+YaAdN6ANoCEdAqm6GDDjzZ3V9lChoBkdAlrI+XqqwQmgHTegDaAhHQKpyShvitJZ1fZQoaAZHQJiWLybx3FFoB03oA2gIR0CqdIs8gZCOdX2UKGgGR0CW9p1ct5D7aAdN6ANoCEdAqnSymMwUQHV9lChoBkdAmdCPoFFDv2gHTegDaAhHQKp6Ur4Fia11fZQoaAZHQJXkg/3WWhRoB03oA2gIR0Cqf30+LWI5dX2UKGgGR0CUnZgDRtxdaAdN6ANoCEdAqoL5lcyFf3V9lChoBkdAmFsoAbQ1JmgHTegDaAhHQKqDNZBcAzZ1fZQoaAZHQJuAN+nZTQ5oB03oA2gIR0Cqic1dX1aodX2UKGgGR0CPba1aW5YpaAdN6ANoCEdAqo2ejwhGIHV9lChoBkdAlsfC0BwMpmgHTegDaAhHQKqP/HGS6lN1fZQoaAZHQJe07HPu5SZoB03oA2gIR0CqkCag2606dX2UKGgGR0CYsfQ0XP7faAdN6ANoCEdAqpXB60IC2nV9lChoBkdAksStZNfw7WgHTegDaAhHQKqZk3sHB1t1fZQoaAZHQJeg4FRpDeFoB03oA2gIR0CqnN+lCTlldX2UKGgGR0CW4PlDWsijaAdN6ANoCEdAqp0XkaMrE3V9lChoBkdAk8S6a1Cw8mgHTegDaAhHQKqlFiG34Kx1fZQoaAZHQJXYSouPFNtoB03oA2gIR0CqqOmr8zhxdX2UKGgGR0CXhBLM9r44aAdN6ANoCEdAqqsuldkauXV9lChoBkdAiKmnSOR1YGgHTegDaAhHQKqrVaJyhi91fZQoaAZHQJL+9yDIzWRoB03oA2gIR0CqsOiA2AG0dX2UKGgGR0CY6aSjgydnaAdN6ANoCEdAqrSzhtLteHV9lChoBkdAmBRdmcvugGgHTegDaAhHQKq29o6CDmN1fZQoaAZHQJ1DCeEqUeNoB03oA2gIR0Cqtx207bL2dX2UKGgGR0CbLqI9TxXoaAdN6ANoCEdAqr80KRdQf3V9lChoBkdAltTNXko4MmgHTegDaAhHQKrD/b0voNd1fZQoaAZHQJTSl3V09yNoB03oA2gIR0CqxjXPZ7HAdX2UKGgGR0CRPBXAuZkTaAdN6ANoCEdAqsZdcdHUdHV9lChoBkdAnLaAj+rEL2gHTegDaAhHQKrL8dSVGCt1fZQoaAZHQJfcFzo2XLNoB03oA2gIR0Cqz6spgCwKdX2UKGgGR0CcA6bfgrH3aAdN6ANoCEdAqtH0L2HtW3V9lChoBkdAjUB3iiqQzWgHTegDaAhHQKrSIGt6ol51fZQoaAZHQJiNnOLR8dBoB03oA2gIR0Cq2Ge67NB4dX2UKGgGR0Cbh1QP7N0OaAdN6ANoCEdAqt4TGPxQSHV9lChoBkdAl3XquKXOW2gHTegDaAhHQKrhFBJI1+B1fZQoaAZHQJfVMGRmseZoB03oA2gIR0Cq4TuXVsk6dX2UKGgGR0CYWj6mwaBJaAdN6ANoCEdAqubGLR8c/HV9lChoBkdAmOTK+evpyWgHTegDaAhHQKrqm3qAz551fZQoaAZHQJZ/R1hb4ahoB03oA2gIR0Cq7O5sCT2WdX2UKGgGR0CUxGr6LwWnaAdN6ANoCEdAqu0Vcv/R3XV9lChoBkdAl0wkoBq9G2gHTegDaAhHQKrytdj5Kvp1fZQoaAZHQJnrrrOZ9eBoB03oA2gIR0Cq93c7QswtdX2UKGgGR0CUkxu7HyVfaAdN6ANoCEdAqvrjvPTodXV9lChoBkdAmVtnsXzlLmgHTegDaAhHQKr7IEFnqV11fZQoaAZHQJr/xMxoIv9oB03oA2gIR0CrAevKMefadX2UKGgGR0CYham5DqnnaAdN6ANoCEdAqwXR+QU5/HV9lChoBkdAlGxaSHM2WWgHTegDaAhHQKsIFR3u/lB1fZQoaAZHQJm0z4fwI+poB03oA2gIR0CrCD42S+xodX2UKGgGR0CdBWKTjebeaAdN6ANoCEdAqw3g3T/hl3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44acbbd3a558fa712e8bbe52e9846228f58cf0e6d8c8ab459e729037aea8ce62
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:509ed55707fbb86a9316104848bd80e47c7f035859c40aba88ee962e308cab64
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6fbf20b040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6fbf20b0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6fbf20b160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6fbf20b1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f6fbf20b280>", "forward": "<function ActorCriticPolicy.forward at 0x7f6fbf20b310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6fbf20b3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6fbf20b430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6fbf20b4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6fbf20b550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6fbf20b5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6fbf20b670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6fbf208b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679205170906049556, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD4GDr+hrDo8UXAIP3mlk7/sRPE+lQmtPsenD0D47XQ+S0rVvl/9ybxzTEq/F6JNv1B6yL+Qq669eOcIwD2cx72NnPu/7IQyO++6GD9/kLU7jXDRPZnEgr6/L4G/O/YgvBaPY7/3qAU/pr3nPmgqTz9jVgO+qIlKPgps7j7zcck/PahVPgAhej4/GRy/inrUPgHyjT+sX8w98nT1vYrPtz6p3tu/ft2hPjfI0j1N3CW/EyIoPzcci74cww6/rjeOP49ypD+1vRZA8z1tv77nAz50/48/ySj1v6a95z5FLJ6/lMo0P7n7MMCTembAZMV6P4+SQT/rycY//V0NwIfB5b9Guts9BOTgvQ0o0z+a8jVAIT7gv7aYVT4Vr10/fYaOvv6RaL5055G/+z8Lv4W63j+HwK4/UeCXvjcygL8xqjc9Fo9jv/eoBT+mvec+RSyev9RKST8/ldW+wQoVP6romT+FqqU+IJWsP5aWMD+LajS/NBBUvvAv3j+FxFw+UTOPPjvqIr3Xt9o/NlwQv/o2Kz962YA+g3//P6hlGT8gm5m8zTerv/mvNL4qEmo+Ll+APRaPY7/3qAU/pr3nPmgqTz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAx1rE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkJIKvgAAAADqPADAAAAAAOnDD7wAAAAAAl/cPwAAAAByw6U8AAAAAJ3J3T8AAAAA13uavQAAAACCOee/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjzyEtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDpWqT0AAAAAOx3kvwAAAABx0Q4+AAAAAEo6AEAAAAAAreXOvQAAAABJ1v4/AAAAADq2AD4AAAAAlSDmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKwgObYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJRfQ9AAAAAOoa5b8AAAAAZUEFPQAAAABxyek/AAAAAIp3nD0AAAAAzqLaPwAAAACe29c9AAAAAP7m3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmCrE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvhI8vQAAAADXDee/AAAAAMx7vj0AAAAATUv4PwAAAADZ89Q8AAAAAGJq3D8AAAAAEqJ5vQAAAACPMfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtDPhYNiH+MAWyUTegDjAF0lEdAqcQp6F/QSnV9lChoBkdAnVU4EKVpsWgHTegDaAhHQKnGYDZDiOx1fZQoaAZHQJ7IjrWy1NRoB03oA2gIR0CpxpO0b961dX2UKGgGR0CW5TFAE+xGaAdN6ANoCEdAqc8BiG34K3V9lChoBkdAnAvdGNJe3WgHTegDaAhHQKnTWTewcHZ1fZQoaAZHQJzho4ACGN9oB03oA2gIR0Cp1Y/nwG4adX2UKGgGR0CZ4/Th5xBFaAdN6ANoCEdAqdW4HJLdvnV9lChoBkdAmlIGBas6rGgHTegDaAhHQKnbOKNyYHB1fZQoaAZHQJ0CnguRLbpoB03oA2gIR0Cp3vMbWEsbdX2UKGgGR0CWo2AtWdVeaAdN6ANoCEdAqeEs0gr6L3V9lChoBkdAlt3AV0tAcGgHTegDaAhHQKnhU90Rvm51fZQoaAZHQJoXJ/mT1TRoB03oA2gIR0Cp5/uJ+DvmdX2UKGgGR0CZqzrcCYCyaAdN6ANoCEdAqe3N69kBjnV9lChoBkdAmV19XcQAdWgHTegDaAhHQKnwZExZdOZ1fZQoaAZHQJ6zRnuiN85oB03oA2gIR0Cp8Iu/L1VYdX2UKGgGR0CagPTURWcSaAdN6ANoCEdAqfYnUhFEzHV9lChoBkdAl30iQYDT0GgHTegDaAhHQKn59IczZYh1fZQoaAZHQJWoHhJiAlRoB03oA2gIR0Cp/D3lr/KhdX2UKGgGR0CbyrCOFQEZaAdN6ANoCEdAqfxjtVrAQHV9lChoBkdAmdsHQyAQQWgHTegDaAhHQKoCFOVPepJ1fZQoaAZHQJQZ2WQfZEloB03oA2gIR0CqB4RNRFZxdX2UKGgGR0CY+cagElmfaAdN6ANoCEdAqgsSzu4PPXV9lChoBkdAl5SJDArQPmgHTegDaAhHQKoLUBFuvU11fZQoaAZHQJ26W08eS0VoB03oA2gIR0CqEayLqD9PdX2UKGgGR0Ced/wcHWz4aAdN6ANoCEdAqhV3zg/C7HV9lChoBkdAnRosByS3b2gHTegDaAhHQKoXvzq8lHB1fZQoaAZHQKCof4DcM3JoB03oA2gIR0CqF+ex4Y78dX2UKGgGR0CRWknF5v9+aAdN6ANoCEdAqh3IxDb8FnV9lChoBkdAlsX8enyd4GgHTegDaAhHQKoh+3kPtlZ1fZQoaAZHQJtctqtYB/9oB03oA2gIR0CqJTLC3w1BdX2UKGgGR0CVw5/giu+zaAdN6ANoCEdAqiVwX/HYH3V9lChoBkdAm0yrZWaMJmgHTegDaAhHQKotCZBLPD51fZQoaAZHQJT2Ub4rSVpoB03oA2gIR0CqML9S/CZXdX2UKGgGR0CbuWirT6SDaAdN6ANoCEdAqjL4NZvDQHV9lChoBkdAncVzDO1OTWgHTegDaAhHQKozHd6cAip1fZQoaAZHQJpCNWzWwvBoB03oA2gIR0CqOKuH31zydX2UKGgGR0CZ4SeV9nbqaAdN6ANoCEdAqjxwL3K0U3V9lChoBkdAnbPO3H7xeGgHTegDaAhHQKo+rmlqJuV1fZQoaAZHQJkw61gH/tJoB03oA2gIR0CqPte9Ba9sdX2UKGgGR0CcRLbVBlcyaAdN6ANoCEdAqkcP9BKL9HV9lChoBkdAnLbVRHf/FWgHTegDaAhHQKpLoacZtN11fZQoaAZHQJik1lCkXUJoB03oA2gIR0CqTc6Df3vhdX2UKGgGR0CcOwDbJwKjaAdN6ANoCEdAqk34KjSG8HV9lChoBkdAnCkLA+IM0GgHTegDaAhHQKpTlkEs8Pp1fZQoaAZHQJbPkJswco9oB03oA2gIR0CqV1VK5CnhdX2UKGgGR0CZvmIfKZDzaAdN6ANoCEdAqlmO1pj+aXV9lChoBkdAmheM2itaIWgHTegDaAhHQKpZthz/6wd1fZQoaAZHQIV11eWv8qFoB03oA2gIR0CqYEbUXpGGdX2UKGgGR0CPhjZSvTw2aAdN6ANoCEdAqmYod8zAOHV9lChoBkdAmIzCr1dxAGgHTegDaAhHQKpo2Aqd6LR1fZQoaAZHQJbwgZLqUvBoB03oA2gIR0CqaQBInSfEdX2UKGgGR0CcM67ALy+YaAdN6ANoCEdAqm6GDDjzZ3V9lChoBkdAlrI+XqqwQmgHTegDaAhHQKpyShvitJZ1fZQoaAZHQJiWLybx3FFoB03oA2gIR0CqdIs8gZCOdX2UKGgGR0CW9p1ct5D7aAdN6ANoCEdAqnSymMwUQHV9lChoBkdAmdCPoFFDv2gHTegDaAhHQKp6Ur4Fia11fZQoaAZHQJXkg/3WWhRoB03oA2gIR0Cqf30+LWI5dX2UKGgGR0CUnZgDRtxdaAdN6ANoCEdAqoL5lcyFf3V9lChoBkdAmFsoAbQ1JmgHTegDaAhHQKqDNZBcAzZ1fZQoaAZHQJuAN+nZTQ5oB03oA2gIR0Cqic1dX1aodX2UKGgGR0CPba1aW5YpaAdN6ANoCEdAqo2ejwhGIHV9lChoBkdAlsfC0BwMpmgHTegDaAhHQKqP/HGS6lN1fZQoaAZHQJe07HPu5SZoB03oA2gIR0CqkCag2606dX2UKGgGR0CYsfQ0XP7faAdN6ANoCEdAqpXB60IC2nV9lChoBkdAksStZNfw7WgHTegDaAhHQKqZk3sHB1t1fZQoaAZHQJeg4FRpDeFoB03oA2gIR0CqnN+lCTlldX2UKGgGR0CW4PlDWsijaAdN6ANoCEdAqp0XkaMrE3V9lChoBkdAk8S6a1Cw8mgHTegDaAhHQKqlFiG34Kx1fZQoaAZHQJXYSouPFNtoB03oA2gIR0CqqOmr8zhxdX2UKGgGR0CXhBLM9r44aAdN6ANoCEdAqqsuldkauXV9lChoBkdAiKmnSOR1YGgHTegDaAhHQKqrVaJyhi91fZQoaAZHQJL+9yDIzWRoB03oA2gIR0CqsOiA2AG0dX2UKGgGR0CY6aSjgydnaAdN6ANoCEdAqrSzhtLteHV9lChoBkdAmBRdmcvugGgHTegDaAhHQKq29o6CDmN1fZQoaAZHQJ1DCeEqUeNoB03oA2gIR0Cqtx207bL2dX2UKGgGR0CbLqI9TxXoaAdN6ANoCEdAqr80KRdQf3V9lChoBkdAltTNXko4MmgHTegDaAhHQKrD/b0voNd1fZQoaAZHQJTSl3V09yNoB03oA2gIR0CqxjXPZ7HAdX2UKGgGR0CRPBXAuZkTaAdN6ANoCEdAqsZdcdHUdHV9lChoBkdAnLaAj+rEL2gHTegDaAhHQKrL8dSVGCt1fZQoaAZHQJfcFzo2XLNoB03oA2gIR0Cqz6spgCwKdX2UKGgGR0CcA6bfgrH3aAdN6ANoCEdAqtH0L2HtW3V9lChoBkdAjUB3iiqQzWgHTegDaAhHQKrSIGt6ol51fZQoaAZHQJiNnOLR8dBoB03oA2gIR0Cq2Ge67NB4dX2UKGgGR0Cbh1QP7N0OaAdN6ANoCEdAqt4TGPxQSHV9lChoBkdAl3XquKXOW2gHTegDaAhHQKrhFBJI1+B1fZQoaAZHQJfVMGRmseZoB03oA2gIR0Cq4TuXVsk6dX2UKGgGR0CYWj6mwaBJaAdN6ANoCEdAqubGLR8c/HV9lChoBkdAmOTK+evpyWgHTegDaAhHQKrqm3qAz551fZQoaAZHQJZ/R1hb4ahoB03oA2gIR0Cq7O5sCT2WdX2UKGgGR0CUxGr6LwWnaAdN6ANoCEdAqu0Vcv/R3XV9lChoBkdAl0wkoBq9G2gHTegDaAhHQKrytdj5Kvp1fZQoaAZHQJnrrrOZ9eBoB03oA2gIR0Cq93c7QswtdX2UKGgGR0CUkxu7HyVfaAdN6ANoCEdAqvrjvPTodXV9lChoBkdAmVtnsXzlLmgHTegDaAhHQKr7IEFnqV11fZQoaAZHQJr/xMxoIv9oB03oA2gIR0CrAevKMefadX2UKGgGR0CYham5DqnnaAdN6ANoCEdAqwXR+QU5/HV9lChoBkdAlGxaSHM2WWgHTegDaAhHQKsIFR3u/lB1fZQoaAZHQJm0z4fwI+poB03oA2gIR0CrCD42S+xodX2UKGgGR0CdBWKTjebeaAdN6ANoCEdAqw3g3T/hl3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93a6132a317b9a9bb6400048072db7694893dc1fa88338650ff5030ad85432e8
3
+ size 1132975
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1834.3720013338345, "std_reward": 143.85585367771992, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T06:53:48.664198"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66e7293972974efc37a500ee72f0e3709bf242f0acf4949d13b88f41c3488734
3
+ size 2136