yyassin commited on
Commit
68f1c7a
·
1 Parent(s): ee9cdec

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.45 +/- 19.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6906275b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd690627640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6906276d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd690627760>", "_build": "<function ActorCriticPolicy._build at 0x7fd6906277f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd690627880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd690627910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6906279a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd690627a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd690627ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd690627b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd690627be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd690622f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682824542578850849, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQdZTq6+9cECUhpRSlIwBbJRNKgGMAXSUR0CUNxHUc4o7dX2UKGgGaAloD0MIWYejq3SAb0CUhpRSlGgVS+5oFkdAlDeEbT+efHV9lChoBmgJaA9DCNrlWx/W8WJAlIaUUpRoFU3oA2gWR0CUN6cJMQEqdX2UKGgGaAloD0MIZkrrbwl0ckCUhpRSlGgVS+toFkdAlDgNWyTpxHV9lChoBmgJaA9DCIy8rInF0nNAlIaUUpRoFUveaBZHQJQ4VL8Jlat1fZQoaAZoCWgPQwi9APvo1EZfQJSGlFKUaBVN6ANoFkdAlDiBs2vSt3V9lChoBmgJaA9DCFNYqaCiWXNAlIaUUpRoFU0KAWgWR0CUOZFMZgogdX2UKGgGaAloD0MIi8OZX80gckCUhpRSlGgVS+JoFkdAlDoZJXhfjXV9lChoBmgJaA9DCFu0AG3rNnFAlIaUUpRoFUvtaBZHQJQ62ukk8ih1fZQoaAZoCWgPQwhxcyoZQBhwQJSGlFKUaBVNJAFoFkdAlDsMx0uDjHV9lChoBmgJaA9DCGHij6LOJ29AlIaUUpRoFU0FAWgWR0CUO+f16E8JdX2UKGgGaAloD0MIEywOZz6kcECUhpRSlGgVS/JoFkdAlDv0xyn1nXV9lChoBmgJaA9DCFd8Q+Gzvm5AlIaUUpRoFU0AAWgWR0CUPTU+9rXUdX2UKGgGaAloD0MIJqd2hqlLcECUhpRSlGgVTW4BaBZHQJQ+LgVGkN51fZQoaAZoCWgPQwia0vpbgsByQJSGlFKUaBVL+GgWR0CUPsCKaXrudX2UKGgGaAloD0MIzXLZ6JyoU0CUhpRSlGgVS7poFkdAlD75cTrVv3V9lChoBmgJaA9DCKaAtP8BBHJAlIaUUpRoFUvqaBZHQJRAQhePaL51fZQoaAZoCWgPQwhG0QMfQ/pxQJSGlFKUaBVL92gWR0CUQQVOsT37dX2UKGgGaAloD0MIV3iXizgacUCUhpRSlGgVTREBaBZHQJRBZNO/L1V1fZQoaAZoCWgPQwgSvvc3aPpuQJSGlFKUaBVL0GgWR0CUQhMbWEsbdX2UKGgGaAloD0MIAHMtWsAUcUCUhpRSlGgVS/toFkdAlEJIwmE5AHV9lChoBmgJaA9DCJP98zQgU3JAlIaUUpRoFUvtaBZHQJREHP4VRDV1fZQoaAZoCWgPQwgHYAMiRApyQJSGlFKUaBVL3WgWR0CURFwFC9h7dX2UKGgGaAloD0MIyQT8GokCcUCUhpRSlGgVS+toFkdAlETNUKiPAHV9lChoBmgJaA9DCEM3+wMllXBAlIaUUpRoFU06AWgWR0CURPgKWszVdX2UKGgGaAloD0MIrwj+t5L9cUCUhpRSlGgVS/RoFkdAlEZpcxCY1HV9lChoBmgJaA9DCAe0dAVbXXNAlIaUUpRoFU0BAWgWR0CURvrdnCfpdX2UKGgGaAloD0MIpI0j1uLdcUCUhpRSlGgVS+1oFkdAlEjkOy3TeHV9lChoBmgJaA9DCL9+iA0WYEVAlIaUUpRoFUuzaBZHQJRJdY3eenR1fZQoaAZoCWgPQwhcr+lBwepwQJSGlFKUaBVNEQFoFkdAlEmDr7fpEHV9lChoBmgJaA9DCPzfERVqO3BAlIaUUpRoFU0DAWgWR0CUSv40Mw10dX2UKGgGaAloD0MIH7+36U92cECUhpRSlGgVTRgBaBZHQJRLuliz9jx1fZQoaAZoCWgPQwiM2CeAYpxLQJSGlFKUaBVL12gWR0CUTHNfw7T2dX2UKGgGaAloD0MIdhcoKbACckCUhpRSlGgVS/doFkdAlE06URnOB3V9lChoBmgJaA9DCCmXxi88iG1AlIaUUpRoFUvqaBZHQJRPT/ffoA51fZQoaAZoCWgPQwj+mNamsXhtQJSGlFKUaBVL5mgWR0CUT1fLs8gZdX2UKGgGaAloD0MIkWCqmfUzckCUhpRSlGgVTRgBaBZHQJRPi7Wd3B51fZQoaAZoCWgPQwiQgqeQK65wQJSGlFKUaBVNBAFoFkdAlFCipJf6XXV9lChoBmgJaA9DCBzqd2GrhHBAlIaUUpRoFUvvaBZHQJRRE3CKrJd1fZQoaAZoCWgPQwiDbcST3Z5xQJSGlFKUaBVNJAFoFkdAlFHLqY7aI3V9lChoBmgJaA9DCB6LbVIRjXJAlIaUUpRoFU0VAWgWR0CUUrfQa72+dX2UKGgGaAloD0MIgQTFjzH1cECUhpRSlGgVTQEBaBZHQJRTwsf7rLR1fZQoaAZoCWgPQwjfMqfL4v1yQJSGlFKUaBVNIgFoFkdAlGXA0j1PFnV9lChoBmgJaA9DCMEZ/P0idHBAlIaUUpRoFU0bAWgWR0CUZeMDfWMCdX2UKGgGaAloD0MIv51EhH89ckCUhpRSlGgVTREBaBZHQJRmrreIl+p1fZQoaAZoCWgPQwi3DaMguKZxQJSGlFKUaBVNBwFoFkdAlGdnCwbEP3V9lChoBmgJaA9DCHKmCdsPLHBAlIaUUpRoFUv3aBZHQJRnY/3WWhR1fZQoaAZoCWgPQwigjVw3pcpwQJSGlFKUaBVL1GgWR0CUZ8n0TURWdX2UKGgGaAloD0MIcO1ESUgycUCUhpRSlGgVTSkBaBZHQJRn/mYBvJl1fZQoaAZoCWgPQwhNSkG3l1FxQJSGlFKUaBVL6mgWR0CUaGfMOf/WdX2UKGgGaAloD0MI6wCIu7qkcECUhpRSlGgVS/9oFkdAlGk05lvqDHV9lChoBmgJaA9DCK8hOC7jikFAlIaUUpRoFUu+aBZHQJRqNEmY0EZ1fZQoaAZoCWgPQwi214Le2y1xQJSGlFKUaBVL4mgWR0CUam6nR9gGdX2UKGgGaAloD0MIuiwmNh8RckCUhpRSlGgVTQ8BaBZHQJRqtYfW+XZ1fZQoaAZoCWgPQwifqkID8fJxQJSGlFKUaBVL7GgWR0CUbY30PH1fdX2UKGgGaAloD0MILAyR09evVkCUhpRSlGgVTegDaBZHQJRu1pmEoOR1fZQoaAZoCWgPQwiRC87grwNwQJSGlFKUaBVNKgFoFkdAlG8NlZowmHV9lChoBmgJaA9DCEg2V81zrHFAlIaUUpRoFU0XAWgWR0CUbyQI2OyWdX2UKGgGaAloD0MIH7qgvmXucECUhpRSlGgVS+hoFkdAlG98/QjUu3V9lChoBmgJaA9DCDs6rkZ2pnJAlIaUUpRoFU0OAWgWR0CUb7D0UXYUdX2UKGgGaAloD0MItW/ur16Gc0CUhpRSlGgVTQUBaBZHQJRwBgpjMFF1fZQoaAZoCWgPQwh1VgvsselvQJSGlFKUaBVNCAFoFkdAlHC7FjurqHV9lChoBmgJaA9DCINsWb4uJXJAlIaUUpRoFUvkaBZHQJRw/iEQGwB1fZQoaAZoCWgPQwi28/3UOGxyQJSGlFKUaBVNEwFoFkdAlHGaLjxTbXV9lChoBmgJaA9DCCFaK9qcMXBAlIaUUpRoFU02AWgWR0CUcaW+XZ5BdX2UKGgGaAloD0MIwmuXNpyZcUCUhpRSlGgVS/VoFkdAlHKSPU8V6HV9lChoBmgJaA9DCLVQMjl1n3JAlIaUUpRoFU0NAWgWR0CUc42ETQE7dX2UKGgGaAloD0MImQzH89kVcUCUhpRSlGgVTSMBaBZHQJR0i9alk6N1fZQoaAZoCWgPQwjpQxfUt9BdQJSGlFKUaBVN6ANoFkdAlHduYtxuK3V9lChoBmgJaA9DCPesa7RcNHBAlIaUUpRoFUv9aBZHQJR3tqveP7x1fZQoaAZoCWgPQwiOPXsuU05yQJSGlFKUaBVNDwFoFkdAlHhYIF/x2HV9lChoBmgJaA9DCKj8a3nliG9AlIaUUpRoFU0LAWgWR0CUeSBo24usdX2UKGgGaAloD0MIOfHVjuLDbkCUhpRSlGgVTUUBaBZHQJR5hWq94/x1fZQoaAZoCWgPQwgou5nRT5lxQJSGlFKUaBVNJQFoFkdAlHnX0Gu9vnV9lChoBmgJaA9DCF37AnphE3JAlIaUUpRoFU0cAWgWR0CUeijdHlOodX2UKGgGaAloD0MIodrgRLQickCUhpRSlGgVTRIBaBZHQJR6MTewcHZ1fZQoaAZoCWgPQwiFzJVBddNxQJSGlFKUaBVL4mgWR0CUekBjnV5KdX2UKGgGaAloD0MIXio25nWScUCUhpRSlGgVTQEBaBZHQJR6Z/ViF0x1fZQoaAZoCWgPQwhwtrkxvdtvQJSGlFKUaBVL7mgWR0CUeqMh5gPVdX2UKGgGaAloD0MIDr+bblmdckCUhpRSlGgVTQQBaBZHQJR6vCemNzd1fZQoaAZoCWgPQwhevB+3X5xuQJSGlFKUaBVL7GgWR0CUe5FJQLuydX2UKGgGaAloD0MIct9qnXiacUCUhpRSlGgVTQYBaBZHQJR9m8AaNuN1fZQoaAZoCWgPQwilaybf7LpxQJSGlFKUaBVNJwFoFkdAlIBfyPMjeXV9lChoBmgJaA9DCBvzOuIQsG9AlIaUUpRoFUvSaBZHQJSBqRnvlU91fZQoaAZoCWgPQwheY5eonidxQJSGlFKUaBVL+GgWR0CUgv1WbPQfdX2UKGgGaAloD0MIfO9v0N4OckCUhpRSlGgVS+FoFkdAlIPHVf/m1nV9lChoBmgJaA9DCDDWNzB5mHBAlIaUUpRoFU0lAWgWR0CUhN5Gz8gqdX2UKGgGaAloD0MI0XmNXSIXcECUhpRSlGgVTQQBaBZHQJSE+jvd/KB1fZQoaAZoCWgPQwg42QbuwDdyQJSGlFKUaBVNEgFoFkdAlIYMpCrtFHV9lChoBmgJaA9DCB+i0R2EdXNAlIaUUpRoFU0OAWgWR0CUhoF0PpY+dX2UKGgGaAloD0MIRmCsb6CUcECUhpRSlGgVS/FoFkdAlIbTSofjj3V9lChoBmgJaA9DCH7Er1gDlXJAlIaUUpRoFU0gAWgWR0CUhx0aIeo2dX2UKGgGaAloD0MIXHSy1HrCcUCUhpRSlGgVTSsBaBZHQJSHrH2h7E51fZQoaAZoCWgPQwik4ZS5eSZyQJSGlFKUaBVNLAFoFkdAlIhb7O3UhHV9lChoBmgJaA9DCF0Y6UVtVmJAlIaUUpRoFU3oA2gWR0CUiJSKWLP2dX2UKGgGaAloD0MIgZTYtT3EckCUhpRSlGgVTUMBaBZHQJSJKbwz+FV1fZQoaAZoCWgPQwiIK2fvDBxxQJSGlFKUaBVNoAFoFkdAlIov+4smOXV9lChoBmgJaA9DCOT5DKi3c3BAlIaUUpRoFU0UAWgWR0CUiskPMB6sdX2UKGgGaAloD0MIB84ZUdrHcUCUhpRSlGgVS95oFkdAlIxLilzltHV9lChoBmgJaA9DCJKTiVsFYHBAlIaUUpRoFUv9aBZHQJSMfjBEa2p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04e8cbdbc6640085253d0a9005b47dcea5541cbd7f0f22e8101dadb7947f981a
3
+ size 146553
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6906275b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd690627640>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6906276d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd690627760>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd6906277f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd690627880>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd690627910>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6906279a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd690627a30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd690627ac0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd690627b50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd690627be0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd690622f80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1682824542578850849,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
35
+ },
36
+ "_last_obs": null,
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": null,
42
+ "_episode_num": 0,
43
+ "use_sde": false,
44
+ "sde_sample_freq": -1,
45
+ "_current_progress_remaining": -0.015808000000000044,
46
+ "_stats_window_size": 100,
47
+ "ep_info_buffer": {
48
+ ":type:": "<class 'collections.deque'>",
49
+ ":serialized:": "gAWVVhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQdZTq6+9cECUhpRSlIwBbJRNKgGMAXSUR0CUNxHUc4o7dX2UKGgGaAloD0MIWYejq3SAb0CUhpRSlGgVS+5oFkdAlDeEbT+efHV9lChoBmgJaA9DCNrlWx/W8WJAlIaUUpRoFU3oA2gWR0CUN6cJMQEqdX2UKGgGaAloD0MIZkrrbwl0ckCUhpRSlGgVS+toFkdAlDgNWyTpxHV9lChoBmgJaA9DCIy8rInF0nNAlIaUUpRoFUveaBZHQJQ4VL8Jlat1fZQoaAZoCWgPQwi9APvo1EZfQJSGlFKUaBVN6ANoFkdAlDiBs2vSt3V9lChoBmgJaA9DCFNYqaCiWXNAlIaUUpRoFU0KAWgWR0CUOZFMZgogdX2UKGgGaAloD0MIi8OZX80gckCUhpRSlGgVS+JoFkdAlDoZJXhfjXV9lChoBmgJaA9DCFu0AG3rNnFAlIaUUpRoFUvtaBZHQJQ62ukk8ih1fZQoaAZoCWgPQwhxcyoZQBhwQJSGlFKUaBVNJAFoFkdAlDsMx0uDjHV9lChoBmgJaA9DCGHij6LOJ29AlIaUUpRoFU0FAWgWR0CUO+f16E8JdX2UKGgGaAloD0MIEywOZz6kcECUhpRSlGgVS/JoFkdAlDv0xyn1nXV9lChoBmgJaA9DCFd8Q+Gzvm5AlIaUUpRoFU0AAWgWR0CUPTU+9rXUdX2UKGgGaAloD0MIJqd2hqlLcECUhpRSlGgVTW4BaBZHQJQ+LgVGkN51fZQoaAZoCWgPQwia0vpbgsByQJSGlFKUaBVL+GgWR0CUPsCKaXrudX2UKGgGaAloD0MIzXLZ6JyoU0CUhpRSlGgVS7poFkdAlD75cTrVv3V9lChoBmgJaA9DCKaAtP8BBHJAlIaUUpRoFUvqaBZHQJRAQhePaL51fZQoaAZoCWgPQwhG0QMfQ/pxQJSGlFKUaBVL92gWR0CUQQVOsT37dX2UKGgGaAloD0MIV3iXizgacUCUhpRSlGgVTREBaBZHQJRBZNO/L1V1fZQoaAZoCWgPQwgSvvc3aPpuQJSGlFKUaBVL0GgWR0CUQhMbWEsbdX2UKGgGaAloD0MIAHMtWsAUcUCUhpRSlGgVS/toFkdAlEJIwmE5AHV9lChoBmgJaA9DCJP98zQgU3JAlIaUUpRoFUvtaBZHQJREHP4VRDV1fZQoaAZoCWgPQwgHYAMiRApyQJSGlFKUaBVL3WgWR0CURFwFC9h7dX2UKGgGaAloD0MIyQT8GokCcUCUhpRSlGgVS+toFkdAlETNUKiPAHV9lChoBmgJaA9DCEM3+wMllXBAlIaUUpRoFU06AWgWR0CURPgKWszVdX2UKGgGaAloD0MIrwj+t5L9cUCUhpRSlGgVS/RoFkdAlEZpcxCY1HV9lChoBmgJaA9DCAe0dAVbXXNAlIaUUpRoFU0BAWgWR0CURvrdnCfpdX2UKGgGaAloD0MIpI0j1uLdcUCUhpRSlGgVS+1oFkdAlEjkOy3TeHV9lChoBmgJaA9DCL9+iA0WYEVAlIaUUpRoFUuzaBZHQJRJdY3eenR1fZQoaAZoCWgPQwhcr+lBwepwQJSGlFKUaBVNEQFoFkdAlEmDr7fpEHV9lChoBmgJaA9DCPzfERVqO3BAlIaUUpRoFU0DAWgWR0CUSv40Mw10dX2UKGgGaAloD0MIH7+36U92cECUhpRSlGgVTRgBaBZHQJRLuliz9jx1fZQoaAZoCWgPQwiM2CeAYpxLQJSGlFKUaBVL12gWR0CUTHNfw7T2dX2UKGgGaAloD0MIdhcoKbACckCUhpRSlGgVS/doFkdAlE06URnOB3V9lChoBmgJaA9DCCmXxi88iG1AlIaUUpRoFUvqaBZHQJRPT/ffoA51fZQoaAZoCWgPQwj+mNamsXhtQJSGlFKUaBVL5mgWR0CUT1fLs8gZdX2UKGgGaAloD0MIkWCqmfUzckCUhpRSlGgVTRgBaBZHQJRPi7Wd3B51fZQoaAZoCWgPQwiQgqeQK65wQJSGlFKUaBVNBAFoFkdAlFCipJf6XXV9lChoBmgJaA9DCBzqd2GrhHBAlIaUUpRoFUvvaBZHQJRRE3CKrJd1fZQoaAZoCWgPQwiDbcST3Z5xQJSGlFKUaBVNJAFoFkdAlFHLqY7aI3V9lChoBmgJaA9DCB6LbVIRjXJAlIaUUpRoFU0VAWgWR0CUUrfQa72+dX2UKGgGaAloD0MIgQTFjzH1cECUhpRSlGgVTQEBaBZHQJRTwsf7rLR1fZQoaAZoCWgPQwjfMqfL4v1yQJSGlFKUaBVNIgFoFkdAlGXA0j1PFnV9lChoBmgJaA9DCMEZ/P0idHBAlIaUUpRoFU0bAWgWR0CUZeMDfWMCdX2UKGgGaAloD0MIv51EhH89ckCUhpRSlGgVTREBaBZHQJRmrreIl+p1fZQoaAZoCWgPQwi3DaMguKZxQJSGlFKUaBVNBwFoFkdAlGdnCwbEP3V9lChoBmgJaA9DCHKmCdsPLHBAlIaUUpRoFUv3aBZHQJRnY/3WWhR1fZQoaAZoCWgPQwigjVw3pcpwQJSGlFKUaBVL1GgWR0CUZ8n0TURWdX2UKGgGaAloD0MIcO1ESUgycUCUhpRSlGgVTSkBaBZHQJRn/mYBvJl1fZQoaAZoCWgPQwhNSkG3l1FxQJSGlFKUaBVL6mgWR0CUaGfMOf/WdX2UKGgGaAloD0MI6wCIu7qkcECUhpRSlGgVS/9oFkdAlGk05lvqDHV9lChoBmgJaA9DCK8hOC7jikFAlIaUUpRoFUu+aBZHQJRqNEmY0EZ1fZQoaAZoCWgPQwi214Le2y1xQJSGlFKUaBVL4mgWR0CUam6nR9gGdX2UKGgGaAloD0MIuiwmNh8RckCUhpRSlGgVTQ8BaBZHQJRqtYfW+XZ1fZQoaAZoCWgPQwifqkID8fJxQJSGlFKUaBVL7GgWR0CUbY30PH1fdX2UKGgGaAloD0MILAyR09evVkCUhpRSlGgVTegDaBZHQJRu1pmEoOR1fZQoaAZoCWgPQwiRC87grwNwQJSGlFKUaBVNKgFoFkdAlG8NlZowmHV9lChoBmgJaA9DCEg2V81zrHFAlIaUUpRoFU0XAWgWR0CUbyQI2OyWdX2UKGgGaAloD0MIH7qgvmXucECUhpRSlGgVS+hoFkdAlG98/QjUu3V9lChoBmgJaA9DCDs6rkZ2pnJAlIaUUpRoFU0OAWgWR0CUb7D0UXYUdX2UKGgGaAloD0MItW/ur16Gc0CUhpRSlGgVTQUBaBZHQJRwBgpjMFF1fZQoaAZoCWgPQwh1VgvsselvQJSGlFKUaBVNCAFoFkdAlHC7FjurqHV9lChoBmgJaA9DCINsWb4uJXJAlIaUUpRoFUvkaBZHQJRw/iEQGwB1fZQoaAZoCWgPQwi28/3UOGxyQJSGlFKUaBVNEwFoFkdAlHGaLjxTbXV9lChoBmgJaA9DCCFaK9qcMXBAlIaUUpRoFU02AWgWR0CUcaW+XZ5BdX2UKGgGaAloD0MIwmuXNpyZcUCUhpRSlGgVS/VoFkdAlHKSPU8V6HV9lChoBmgJaA9DCLVQMjl1n3JAlIaUUpRoFU0NAWgWR0CUc42ETQE7dX2UKGgGaAloD0MImQzH89kVcUCUhpRSlGgVTSMBaBZHQJR0i9alk6N1fZQoaAZoCWgPQwjpQxfUt9BdQJSGlFKUaBVN6ANoFkdAlHduYtxuK3V9lChoBmgJaA9DCPesa7RcNHBAlIaUUpRoFUv9aBZHQJR3tqveP7x1fZQoaAZoCWgPQwiOPXsuU05yQJSGlFKUaBVNDwFoFkdAlHhYIF/x2HV9lChoBmgJaA9DCKj8a3nliG9AlIaUUpRoFU0LAWgWR0CUeSBo24usdX2UKGgGaAloD0MIOfHVjuLDbkCUhpRSlGgVTUUBaBZHQJR5hWq94/x1fZQoaAZoCWgPQwgou5nRT5lxQJSGlFKUaBVNJQFoFkdAlHnX0Gu9vnV9lChoBmgJaA9DCF37AnphE3JAlIaUUpRoFU0cAWgWR0CUeijdHlOodX2UKGgGaAloD0MIodrgRLQickCUhpRSlGgVTRIBaBZHQJR6MTewcHZ1fZQoaAZoCWgPQwiFzJVBddNxQJSGlFKUaBVL4mgWR0CUekBjnV5KdX2UKGgGaAloD0MIXio25nWScUCUhpRSlGgVTQEBaBZHQJR6Z/ViF0x1fZQoaAZoCWgPQwhwtrkxvdtvQJSGlFKUaBVL7mgWR0CUeqMh5gPVdX2UKGgGaAloD0MIDr+bblmdckCUhpRSlGgVTQQBaBZHQJR6vCemNzd1fZQoaAZoCWgPQwhevB+3X5xuQJSGlFKUaBVL7GgWR0CUe5FJQLuydX2UKGgGaAloD0MIct9qnXiacUCUhpRSlGgVTQYBaBZHQJR9m8AaNuN1fZQoaAZoCWgPQwilaybf7LpxQJSGlFKUaBVNJwFoFkdAlIBfyPMjeXV9lChoBmgJaA9DCBvzOuIQsG9AlIaUUpRoFUvSaBZHQJSBqRnvlU91fZQoaAZoCWgPQwheY5eonidxQJSGlFKUaBVL+GgWR0CUgv1WbPQfdX2UKGgGaAloD0MIfO9v0N4OckCUhpRSlGgVS+FoFkdAlIPHVf/m1nV9lChoBmgJaA9DCDDWNzB5mHBAlIaUUpRoFU0lAWgWR0CUhN5Gz8gqdX2UKGgGaAloD0MI0XmNXSIXcECUhpRSlGgVTQQBaBZHQJSE+jvd/KB1fZQoaAZoCWgPQwg42QbuwDdyQJSGlFKUaBVNEgFoFkdAlIYMpCrtFHV9lChoBmgJaA9DCB+i0R2EdXNAlIaUUpRoFU0OAWgWR0CUhoF0PpY+dX2UKGgGaAloD0MIRmCsb6CUcECUhpRSlGgVS/FoFkdAlIbTSofjj3V9lChoBmgJaA9DCH7Er1gDlXJAlIaUUpRoFU0gAWgWR0CUhx0aIeo2dX2UKGgGaAloD0MIXHSy1HrCcUCUhpRSlGgVTSsBaBZHQJSHrH2h7E51fZQoaAZoCWgPQwik4ZS5eSZyQJSGlFKUaBVNLAFoFkdAlIhb7O3UhHV9lChoBmgJaA9DCF0Y6UVtVmJAlIaUUpRoFU3oA2gWR0CUiJSKWLP2dX2UKGgGaAloD0MIgZTYtT3EckCUhpRSlGgVTUMBaBZHQJSJKbwz+FV1fZQoaAZoCWgPQwiIK2fvDBxxQJSGlFKUaBVNoAFoFkdAlIov+4smOXV9lChoBmgJaA9DCOT5DKi3c3BAlIaUUpRoFU0UAWgWR0CUiskPMB6sdX2UKGgGaAloD0MIB84ZUdrHcUCUhpRSlGgVS95oFkdAlIxLilzltHV9lChoBmgJaA9DCJKTiVsFYHBAlIaUUpRoFUv9aBZHQJSMfjBEa2p1ZS4="
50
+ },
51
+ "ep_success_buffer": {
52
+ ":type:": "<class 'collections.deque'>",
53
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
54
+ },
55
+ "_n_updates": 248,
56
+ "observation_space": {
57
+ ":type:": "<class 'gym.spaces.box.Box'>",
58
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
59
+ "dtype": "float32",
60
+ "_shape": [
61
+ 8
62
+ ],
63
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
64
+ "high": "[inf inf inf inf inf inf inf inf]",
65
+ "bounded_below": "[False False False False False False False False]",
66
+ "bounded_above": "[False False False False False False False False]",
67
+ "_np_random": null
68
+ },
69
+ "action_space": {
70
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
71
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
72
+ "n": 4,
73
+ "_shape": [],
74
+ "dtype": "int64",
75
+ "_np_random": null
76
+ },
77
+ "n_envs": 16,
78
+ "n_steps": 1024,
79
+ "gamma": 0.999,
80
+ "gae_lambda": 0.98,
81
+ "ent_coef": 0.01,
82
+ "vf_coef": 0.5,
83
+ "max_grad_norm": 0.5,
84
+ "batch_size": 64,
85
+ "n_epochs": 4,
86
+ "clip_range": {
87
+ ":type:": "<class 'function'>",
88
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
89
+ },
90
+ "clip_range_vf": null,
91
+ "normalize_advantage": true,
92
+ "target_kl": null
93
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbdbc6d87120ab6093e733709881f38e0681b053f236a97b182eec55ff616306
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7bd118b9ea6f5a14a15892995868d6157f915f5a75cf5c7d89de147a3111666
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (227 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.45196443915836, "std_reward": 19.175012658681595, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T03:47:38.596214"}