yuxin
commited on
Commit
·
84e7143
1
Parent(s):
cc3ec16
add processor
Browse files- config_segvol.py +4 -1
- model_segvol_single.py +106 -0
config_segvol.py
CHANGED
@@ -5,9 +5,12 @@ class SegVolConfig(PretrainedConfig):
|
|
5 |
|
6 |
def __init__(
|
7 |
self,
|
|
|
|
|
8 |
**kwargs,
|
9 |
):
|
10 |
self.spatial_size = [32, 256, 256]
|
11 |
self.patch_size = [4, 16, 16]
|
12 |
-
self.test_mode =
|
|
|
13 |
super().__init__(**kwargs)
|
|
|
5 |
|
6 |
def __init__(
|
7 |
self,
|
8 |
+
test_mode=True,
|
9 |
+
test_w_zoom=False,
|
10 |
**kwargs,
|
11 |
):
|
12 |
self.spatial_size = [32, 256, 256]
|
13 |
self.patch_size = [4, 16, 16]
|
14 |
+
self.test_mode = test_mode
|
15 |
+
self.test_w_zoom = test_w_zoom
|
16 |
super().__init__(**kwargs)
|
model_segvol_single.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
from transformers import PreTrainedModel
|
2 |
from .config_segvol import SegVolConfig
|
|
|
|
|
3 |
|
4 |
class SegVolModel(PreTrainedModel):
|
5 |
config_class = SegVolConfig
|
@@ -21,10 +23,114 @@ class SegVolModel(PreTrainedModel):
|
|
21 |
patch_size=self.config.patch_size,
|
22 |
test_mode=self.config.test_mode,
|
23 |
)
|
|
|
|
|
24 |
|
25 |
def forward(self, image, text=None, boxes=None, points=None, **kwargs):
|
26 |
return self.model.forward(image, text=text, boxes=boxes, points=points, **kwargs)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# SegVol
|
29 |
import torch
|
30 |
import torch.nn as nn
|
|
|
1 |
from transformers import PreTrainedModel
|
2 |
from .config_segvol import SegVolConfig
|
3 |
+
import numpy as np
|
4 |
+
import monai.transforms as transforms
|
5 |
|
6 |
class SegVolModel(PreTrainedModel):
|
7 |
config_class = SegVolConfig
|
|
|
23 |
patch_size=self.config.patch_size,
|
24 |
test_mode=self.config.test_mode,
|
25 |
)
|
26 |
+
|
27 |
+
self.processor = SegVolProcessor(spatial_size=self.config.spatial_size)
|
28 |
|
29 |
def forward(self, image, text=None, boxes=None, points=None, **kwargs):
|
30 |
return self.model.forward(image, text=text, boxes=boxes, points=points, **kwargs)
|
31 |
|
32 |
+
# processor
|
33 |
+
class SegVolProcessor():
|
34 |
+
def __init__(self, spatial_size) -> None:
|
35 |
+
self.img_loader = transforms.LoadImage()
|
36 |
+
self.transform = transforms.Compose(
|
37 |
+
[
|
38 |
+
ForegroundNormalization(keys=["image"]),
|
39 |
+
DimTranspose(keys=["image", "label"]),
|
40 |
+
MinMaxNormalization(),
|
41 |
+
transforms.CropForegroundd(keys=["image", "label"], source_key="image"),
|
42 |
+
transforms.ToTensord(keys=["image", "label"]),
|
43 |
+
]
|
44 |
+
)
|
45 |
+
self.zoom_out_transform = transforms.Resized(keys=["image", "label"], spatial_size=spatial_size, mode='nearest-exact')
|
46 |
+
|
47 |
+
# ct_path is path for a ct scan file with nii.gz format
|
48 |
+
# gt_path is path for a ground truth file with nii.gz format
|
49 |
+
def preprocess_ct_gt(self, ct_path, gt_path, category):
|
50 |
+
item = {}
|
51 |
+
# generate ct_voxel_ndarray
|
52 |
+
ct_voxel_ndarray, _ = self.img_loader(ct_path)
|
53 |
+
ct_voxel_ndarray = np.array(ct_voxel_ndarray).squeeze()
|
54 |
+
ct_shape = ct_voxel_ndarray.shape
|
55 |
+
ct_voxel_ndarray = np.expand_dims(ct_voxel_ndarray, axis=0)
|
56 |
+
item['image'] = ct_voxel_ndarray
|
57 |
+
|
58 |
+
# generate gt_voxel_ndarray
|
59 |
+
gt_voxel_ndarray, _ = self.img_loader(gt_path)
|
60 |
+
gt_voxel_ndarray = np.array(gt_voxel_ndarray)
|
61 |
+
present_categories = np.unique(gt_voxel_ndarray)
|
62 |
+
gt_masks = []
|
63 |
+
for cls_idx in range(len(category)):
|
64 |
+
# ignore background
|
65 |
+
cls = cls_idx + 1
|
66 |
+
if cls not in present_categories:
|
67 |
+
gt_voxel_ndarray_category = np.zeros(ct_shape)
|
68 |
+
gt_masks.append(gt_voxel_ndarray_category)
|
69 |
+
else:
|
70 |
+
gt_voxel_ndarray_category = gt_voxel_ndarray.copy()
|
71 |
+
gt_voxel_ndarray_category[gt_voxel_ndarray != cls] = 0
|
72 |
+
gt_voxel_ndarray_category[gt_voxel_ndarray == cls] = 1
|
73 |
+
gt_masks.append(gt_voxel_ndarray_category)
|
74 |
+
gt_voxel_ndarray = np.stack(gt_masks, axis=0)
|
75 |
+
assert gt_voxel_ndarray.shape[0] == len(category) and gt_voxel_ndarray.shape[1:] == ct_voxel_ndarray.shape[1:]
|
76 |
+
item['label'] = gt_voxel_ndarray.astype(np.int32)
|
77 |
+
|
78 |
+
# transform
|
79 |
+
item = self.transform(item)
|
80 |
+
print('ready for zoom out')
|
81 |
+
item_zoom_out = self.zoom_out_transform(item)
|
82 |
+
item['zoom_out_image'] = item_zoom_out['image']
|
83 |
+
item['zoom_out_label'] = item_zoom_out['label']
|
84 |
+
print( 'Zoom_in image shape: ', item['image'].shape,
|
85 |
+
'\nZoom_in label shape: ', item['label'].shape,
|
86 |
+
'\nZoom_out image shape: ', item['zoom_out_image'].shape,
|
87 |
+
'\nZoom_out label shape: ', item['zoom_out_label'].shape,
|
88 |
+
)
|
89 |
+
return item
|
90 |
+
|
91 |
+
class MinMaxNormalization(transforms.Transform):
|
92 |
+
def __call__(self, data):
|
93 |
+
d = dict(data)
|
94 |
+
k = "image"
|
95 |
+
d[k] = d[k] - d[k].min()
|
96 |
+
d[k] = d[k] / np.clip(d[k].max(), a_min=1e-8, a_max=None)
|
97 |
+
return d
|
98 |
+
|
99 |
+
class DimTranspose(transforms.Transform):
|
100 |
+
def __init__(self, keys):
|
101 |
+
self.keys = keys
|
102 |
+
|
103 |
+
def __call__(self, data):
|
104 |
+
d = dict(data)
|
105 |
+
for key in self.keys:
|
106 |
+
d[key] = np.swapaxes(d[key], -1, -3)
|
107 |
+
return d
|
108 |
+
|
109 |
+
class ForegroundNormalization(transforms.Transform):
|
110 |
+
def __init__(self, keys):
|
111 |
+
self.keys = keys
|
112 |
+
|
113 |
+
def __call__(self, data):
|
114 |
+
d = dict(data)
|
115 |
+
|
116 |
+
for key in self.keys:
|
117 |
+
d[key] = self.normalize(d[key])
|
118 |
+
return d
|
119 |
+
|
120 |
+
def normalize(self, ct_narray):
|
121 |
+
ct_voxel_ndarray = ct_narray.copy()
|
122 |
+
ct_voxel_ndarray = ct_voxel_ndarray.flatten()
|
123 |
+
thred = np.mean(ct_voxel_ndarray)
|
124 |
+
voxel_filtered = ct_voxel_ndarray[(ct_voxel_ndarray > thred)]
|
125 |
+
upper_bound = np.percentile(voxel_filtered, 99.95)
|
126 |
+
lower_bound = np.percentile(voxel_filtered, 00.05)
|
127 |
+
mean = np.mean(voxel_filtered)
|
128 |
+
std = np.std(voxel_filtered)
|
129 |
+
### transform ###
|
130 |
+
ct_narray = np.clip(ct_narray, lower_bound, upper_bound)
|
131 |
+
ct_narray = (ct_narray - mean) / max(std, 1e-8)
|
132 |
+
return ct_narray
|
133 |
+
|
134 |
# SegVol
|
135 |
import torch
|
136 |
import torch.nn as nn
|