yuvalkirstain commited on
Commit
5d7a24c
1 Parent(s): 4811ca8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Card for Model ID
2
+
3
+ This model is a scoring function for images generated from text. It takes as input a prompt and a generated image and outputs a score.
4
+ It can be used a general scoring function, human preference prediction, model evaluation, image ranking, and more.
5
+
6
+
7
+ ## Model Details
8
+
9
+ ### Model Description
10
+
11
+ This model was finetuned from CLIP-H.
12
+
13
+ ### Model Sources [optional]
14
+
15
+ <!-- Provide the basic links for the model. -->
16
+
17
+ - **Repository:** [See the PickScore repo](https://github.com/yuvalkirstain/PickScore)
18
+ - **Paper [optional]:** TODO
19
+ - **Demo [optional]:** TODO
20
+
21
+ ## How to Get Started with the Model
22
+
23
+ Use the code below to get started with the model.
24
+
25
+ ```python
26
+ # import
27
+ from transformers import AutoProcessor, AutoModel
28
+
29
+ # load model
30
+ device = "cuda"
31
+ processor_name_or_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
32
+ model_pretrained_name_or_path = "yuvalkirstain/PickScore_v1"
33
+
34
+ processor = AutoProcessor.from_pretrained(processor_name_or_path)
35
+ model = AutoModel.from_pretrained(model_pretrained_name_or_path).eval().to(device)
36
+
37
+ def calc_probs(prompt, images):
38
+
39
+ # preprocess
40
+ image_inputs = processor(
41
+ images=images,
42
+ padding=True,
43
+ truncation=True,
44
+ max_length=77,
45
+ return_tensors="pt",
46
+ ).to(device)
47
+
48
+ text_inputs = processor(
49
+ text=prompt,
50
+ padding=True,
51
+ truncation=True,
52
+ max_length=77,
53
+ return_tensors="pt",
54
+ ).to(device)
55
+
56
+
57
+ with torch.no_grad():
58
+ # embed
59
+ image_embs = model.get_image_features(**image_inputs)
60
+ image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True)
61
+
62
+ text_embs = model.get_text_features(**text_inputs)
63
+ text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True)
64
+
65
+ # score
66
+ scores = model.logit_scale.exp() * (text_embs @ image_embs.T)[0]
67
+
68
+ # get probabilities if you have multiple images to choose from
69
+ probs = torch.softmax(scores, dim=-1)
70
+
71
+ return probs.cpu().tolist()
72
+
73
+ pil_images = [Image.open("my_amazing_images/1.jpg"), Image.open("my_amazing_images/2.jpg")]
74
+ prompt = "fantastic, increadible prompt"
75
+ print(calc_probs(prompt, pil_images))
76
+ ```
77
+ ## Training Details
78
+
79
+ ### Training Data
80
+
81
+ This model was trained on the [Pick-a-Pic dataset](https://huggingface.co/datasets/yuvalkirstain/pickapic_v1).
82
+
83
+
84
+ ### Training Procedure
85
+
86
+ TODO - add paper.
87
+
88
+
89
+ ## Citation [optional]
90
+
91
+ TODO add paper
92
+
93
+ **BibTeX:**
94
+
95
+ [More Information Needed]
96
+
97
+ **APA:**
98
+
99
+ [More Information Needed]
100
+
101
+