yumingyi commited on
Commit
ebaa226
1 Parent(s): f20185c

Update to gamma

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 288.94 +/- 15.02
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 295.41 +/- 12.35
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3735e5c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3735e5ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3735e5d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3735e5dc0>", "_build": "<function ActorCriticPolicy._build at 0x7ff3735e5e50>", "forward": "<function ActorCriticPolicy.forward at 0x7ff3735e5ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff3735e5f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3735ea040>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff3735ea0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3735ea160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3735ea1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3735ea280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff3735e7880>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 262144, "_total_timesteps": 250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678785183049147585, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOav7j3hszM+7i/2vVeKv76Aicw9uIUQvgAAAAAAAAAAZnb7O/b8dbrlC9c3UffHMvRZz7qw4vu2AACAPwAAgD/me2M92MW0P4rZMj5s8d++SSzpPVJ07jsAAAAAAAAAAAB6TT0i14w/oAJjPiR7Kr+x4ME951USPgAAAAAAAAAA5qCOPfwbeT2SUou9236wvv7HYj3ipzi9AAAAAAAAAACauwS+AsysP+7xm76waxm//WyPvuxlHb4AAAAAAAAAAHOXoj1WL1U//DILPlDqNr85sQo9axPevAAAAAAAAAAAzebSPDipy7urcTE8vfzFPLiLIL1A2qQ9AACAPwAAgD9NjXg9FEC7uuYWHjNFz/GuPZkRuQLBxbMAAIA/AACAP80Zi7zsVu277vNKPanGmzyUHDq99U7HPQAAgD8AAIA/ZlLbPXtmr7p12zC0BysKr0+qVroO2LEzAAAAAAAAgD9NExg9FICrusb0dzr+5WW2/fE4OCftjbkAAAAAAAAAAI0upj32FGq65ZxyOE/eWTM++6G4qEOOtwAAgD8AAIA/Tes9vRfsrj9XPpm+BumgvoOWuL1+VWu+AAAAAAAAAAAzlUq8RagzPojWuzwGLc++pccjPdIPU70AAAAAAAAAAFZSmr5riTA/7lg/PhZUEr/GPpq+emqEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe6GA7WBHc0CUhpRSlIwBbJRLoowBdJRHQMB2jnKwIMV1fZQoaAZoCWgPQwicTrLV5WxvQJSGlFKUaBVLumgWR0DAdo+hysCDdX2UKGgGaAloD0MINQnekEY/c0CUhpRSlGgVS9doFkdAwHar/Ot4iXV9lChoBmgJaA9DCCk900vM2nJAlIaUUpRoFUupaBZHQMB2tB3qzJJ1fZQoaAZoCWgPQwjpf7kWrRR0QJSGlFKUaBVL02gWR0DAdr8n9ehPdX2UKGgGaAloD0MIq+l6omupbkCUhpRSlGgVS7ZoFkdAwHbJ+glF+nV9lChoBmgJaA9DCCvaHOc2CnNAlIaUUpRoFUuvaBZHQMB203uNPxh1fZQoaAZoCWgPQwgWinQ/Z1lxQJSGlFKUaBVLxGgWR0DAdtcchkiEdX2UKGgGaAloD0MIvtwnR8EGckCUhpRSlGgVS5poFkdAwHbdQ7cO9XV9lChoBmgJaA9DCJxsA3cgEXBAlIaUUpRoFUu4aBZHQMB26ZJsfq51fZQoaAZoCWgPQwhkc9U8h69yQJSGlFKUaBVLz2gWR0DAduugOBlMdX2UKGgGaAloD0MICme3lsnecUCUhpRSlGgVS6ZoFkdAwHbz19v0iHV9lChoBmgJaA9DCJV9VwQ/AHBAlIaUUpRoFUu8aBZHQMB29bTUiIN1fZQoaAZoCWgPQwid1JelHW1xQJSGlFKUaBVLq2gWR0DAdvd8stkGdX2UKGgGaAloD0MIumjIeBQLcUCUhpRSlGgVS7loFkdAwHb4nQ6ZIHV9lChoBmgJaA9DCLfUQV6Pym9AlIaUUpRoFUvAaBZHQMB2/DgydnV1fZQoaAZoCWgPQwi7m6c6JKFxQJSGlFKUaBVLvWgWR0DAdwDRplBhdX2UKGgGaAloD0MIURVT6eepcUCUhpRSlGgVS71oFkdAwHcb39JjD3V9lChoBmgJaA9DCKVquwm+P0FAlIaUUpRoFUtzaBZHQMB3IQKrq+t1fZQoaAZoCWgPQwhgkzXqoe9xQJSGlFKUaBVLy2gWR0DAeZ2d3B55dX2UKGgGaAloD0MIEmqGVBEDckCUhpRSlGgVS8loFkdAwHmnqPfbbnV9lChoBmgJaA9DCBdjYB1H0GdAlIaUUpRoFU3oA2gWR0DAeacdeY2LdX2UKGgGaAloD0MI7L5jeGzvb0CUhpRSlGgVS61oFkdAwHmtmknCwnV9lChoBmgJaA9DCPRNmgbFvHFAlIaUUpRoFUvEaBZHQMB5rsBQvYh1fZQoaAZoCWgPQwhc5QmEHflxQJSGlFKUaBVLvGgWR0DAebJ6By0bdX2UKGgGaAloD0MIDat4I/Pdb0CUhpRSlGgVS75oFkdAwHnFJ9RaYHV9lChoBmgJaA9DCIBlpUlpNnFAlIaUUpRoFUvCaBZHQMB5yVYhdMV1fZQoaAZoCWgPQwjja88sCQJuQJSGlFKUaBVLrGgWR0DAecki8nNQdX2UKGgGaAloD0MIeSEdHkKmcECUhpRSlGgVS7VoFkdAwHnLZ5AyEnV9lChoBmgJaA9DCGwIjss4/3BAlIaUUpRoFUvHaBZHQMB502AG0NV1fZQoaAZoCWgPQwga+FENO6RzQJSGlFKUaBVL0GgWR0DAeeEz/IbPdX2UKGgGaAloD0MIe/oI/OGZQ0CUhpRSlGgVS2toFkdAwHnuyprDZXV9lChoBmgJaA9DCHqKHCLuQHFAlIaUUpRoFUumaBZHQMB57+AVfu11fZQoaAZoCWgPQwiFlnX/2DtyQJSGlFKUaBVL/WgWR0DAefhW912adX2UKGgGaAloD0MIxCRcyCNZUkCUhpRSlGgVS4ZoFkdAwHn6ZaV2R3V9lChoBmgJaA9DCCx96IK6AnNAlIaUUpRoFUvIaBZHQMB6EYDDCP91fZQoaAZoCWgPQwj4UKIlT3txQJSGlFKUaBVLu2gWR0DAehRQpF1CdX2UKGgGaAloD0MIINRFCqXvckCUhpRSlGgVS/loFkdAwHofUWEbpHV9lChoBmgJaA9DCKSIDKt4X3JAlIaUUpRoFUvRaBZHQMB6IfmDDj11fZQoaAZoCWgPQwgOSphp++FxQJSGlFKUaBVLnWgWR0DAeilOARTTdX2UKGgGaAloD0MI/G1PkJjvcUCUhpRSlGgVS6toFkdAwHoyNe+mFnV9lChoBmgJaA9DCMOBkCwg7nJAlIaUUpRoFUvdaBZHQMB6MkPMB6t1fZQoaAZoCWgPQwjeyafHNrRzQJSGlFKUaBVLxWgWR0DAekYKc/dJdX2UKGgGaAloD0MIsoS1MTYtc0CUhpRSlGgVS9VoFkdAwHpJIFvAGnV9lChoBmgJaA9DCMJQhxWuq3NAlIaUUpRoFUvCaBZHQMB6TSvs7dV1fZQoaAZoCWgPQwifIoeIG0BxQJSGlFKUaBVLqmgWR0DAekzOs1badX2UKGgGaAloD0MIjErqBLT0cUCUhpRSlGgVS6VoFkdAwHpmf0VafXV9lChoBmgJaA9DCHKKjuTyI29AlIaUUpRoFUu3aBZHQMB6aQmE5AB1fZQoaAZoCWgPQwhHAg02NZlxQJSGlFKUaBVLvmgWR0DAenFnIyTIdX2UKGgGaAloD0MIjSRBuMJecUCUhpRSlGgVS8VoFkdAwHqF225QQHV9lChoBmgJaA9DCKtbPSe9FG9AlIaUUpRoFUvBaBZHQMB6o8ZLqUx1fZQoaAZoCWgPQwg7AU2EzfdxQJSGlFKUaBVLrWgWR0DAeqU7yQPqdX2UKGgGaAloD0MIuHU3T7WgcECUhpRSlGgVS7RoFkdAwHq5JK8L8nV9lChoBmgJaA9DCMgjuJGy+HBAlIaUUpRoFUvIaBZHQMB6wN7SiM51fZQoaAZoCWgPQwgBLzNs1LpxQJSGlFKUaBVL4GgWR0DAesNHOKO1dX2UKGgGaAloD0MI73N8tDikcUCUhpRSlGgVS7xoFkdAwHrMURnOB3V9lChoBmgJaA9DCJ86Vik9vW9AlIaUUpRoFUuwaBZHQMB623BP9DR1fZQoaAZoCWgPQwjt1jIZDrNyQJSGlFKUaBVL02gWR0DAeuAdMj/udX2UKGgGaAloD0MI8gnZeVtdcUCUhpRSlGgVS8JoFkdAwHrvoGIKt3V9lChoBmgJaA9DCCeiX1s/N3FAlIaUUpRoFUvIaBZHQMB6+pN0vGp1fZQoaAZoCWgPQwhnRdREHzxzQJSGlFKUaBVL1mgWR0DAeweuoxYadX2UKGgGaAloD0MIRzzZzUxEcUCUhpRSlGgVS8loFkdAwHsZ6yjYZnV9lChoBmgJaA9DCO8cylCVZ3JAlIaUUpRoFUvNaBZHQMB7GwokRjB1fZQoaAZoCWgPQwg/ARQjS2VwQJSGlFKUaBVLrWgWR0DAex2wRoRJdX2UKGgGaAloD0MIIsMq3si4ckCUhpRSlGgVS91oFkdAwHsx2mHgxnV9lChoBmgJaA9DCDEHQUdru3NAlIaUUpRoFUu8aBZHQMB7SK6e5Fx1fZQoaAZoCWgPQwjsppTXyslwQJSGlFKUaBVLwmgWR0DAe0zxNIsidX2UKGgGaAloD0MIcXFUbiLoc0CUhpRSlGgVS7JoFkdAwHtTgFX7tXV9lChoBmgJaA9DCHeDaK2ojXJAlIaUUpRoFUunaBZHQMB7XTlLeyl1fZQoaAZoCWgPQwhbIhecwRFxQJSGlFKUaBVLtmgWR0DAe1588cMmdX2UKGgGaAloD0MI5DJuaqBlcECUhpRSlGgVS6toFkdAwHtw3EQ5FXV9lChoBmgJaA9DCKdAZmdR4XFAlIaUUpRoFUvNaBZHQMB7deGXXy11fZQoaAZoCWgPQwih2uBEtKtxQJSGlFKUaBVLrGgWR0DAe4jQkX1rdX2UKGgGaAloD0MI+7K0UzM8ckCUhpRSlGgVS8FoFkdAwHuLXvH933V9lChoBmgJaA9DCDogCfs2u3JAlIaUUpRoFUu3aBZHQMB7nvAO8TV1fZQoaAZoCWgPQwhD5zV2iW9yQJSGlFKUaBVLpWgWR0DAe7SM72csdX2UKGgGaAloD0MIVmEzwEWmcECUhpRSlGgVS8BoFkdAwHu192HLzXV9lChoBmgJaA9DCDP5ZpsbuXFAlIaUUpRoFUu3aBZHQMB7w4vFm4B1fZQoaAZoCWgPQwjBjv8CAc1xQJSGlFKUaBVLyGgWR0DAe9OUhV2idX2UKGgGaAloD0MI/B2KAr14ckCUhpRSlGgVS7poFkdAwHviuHN5dHV9lChoBmgJaA9DCFuxv+wem3NAlIaUUpRoFUu+aBZHQMB8BQNkOI91fZQoaAZoCWgPQwhd+MH51EF0QJSGlFKUaBVLtGgWR0DAfBD0Dlo2dX2UKGgGaAloD0MIXOZ0WYx1ckCUhpRSlGgVS6RoFkdAwHwVgBLf13V9lChoBmgJaA9DCLFNKhorVXFAlIaUUpRoFUvUaBZHQMB8JQyZa3Z1fZQoaAZoCWgPQwjSqSuf5VNxQJSGlFKUaBVLy2gWR0DAfCdYuCf6dX2UKGgGaAloD0MI7BLVW0MJdECUhpRSlGgVS+1oFkdAwHwxZamoBXV9lChoBmgJaA9DCOvgYG9iLG9AlIaUUpRoFUuzaBZHQMB8PzkZJkJ1fZQoaAZoCWgPQwibrie67gFzQJSGlFKUaBVL2WgWR0DAfE6NsFdLdX2UKGgGaAloD0MI9Gvrp79wcUCUhpRSlGgVS8VoFkdAwHxODK5kLHV9lChoBmgJaA9DCLPw9bWub3FAlIaUUpRoFUu2aBZHQMB8aaM72ct1fZQoaAZoCWgPQwj5SEp6GBNwQJSGlFKUaBVLqGgWR0DAfHo/qxC6dX2UKGgGaAloD0MI9RH4ww9nc0CUhpRSlGgVS8VoFkdAwHx6LVnVXnV9lChoBmgJaA9DCFMGDmhpT3BAlIaUUpRoFUuoaBZHQMB8iM1TBIp1fZQoaAZoCWgPQwi2+BQAY81lQJSGlFKUaBVN6ANoFkdAwHyUjrzGxXV9lChoBmgJaA9DCMvXZfiPpnFAlIaUUpRoFUvcaBZHQMB8nZwGW2R1fZQoaAZoCWgPQwg+z582KuByQJSGlFKUaBVLzGgWR0DAfLz876pHdX2UKGgGaAloD0MINxYUBiUSc0CUhpRSlGgVS8BoFkdAwHy++h4+r3V9lChoBmgJaA9DCLjmjv5XeHJAlIaUUpRoFUuzaBZHQMB8wcENe+p1fZQoaAZoCWgPQwiR1ELJZOdwQJSGlFKUaBVLqGgWR0DAfMn6hxo7dX2UKGgGaAloD0MIzv5Aue3BcECUhpRSlGgVS7xoFkdAwHzMur6tT3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 808, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3735e5c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3735e5ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3735e5d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3735e5dc0>", "_build": "<function ActorCriticPolicy._build at 0x7ff3735e5e50>", "forward": "<function ActorCriticPolicy.forward at 0x7ff3735e5ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff3735e5f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3735ea040>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff3735ea0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3735ea160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3735ea1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3735ea280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff3735e7880>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678786655890055852, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbZAT5KhJg/mrTZPvrbNb/UVx8+p4RMPgAAAAAAAAAAmjlyujyqdj4+Ahw9kzcZvyKTBb0xoh89AAAAAAAAAABaLOI9GUKTP8UiET/NgEa/JW7/PfJpkT4AAAAAAAAAAIAR4T1W0TE9zBi2vmEEt74mNDq+dj4LvgAAAAAAAAAAyn2HPk5Bhz++9aM+p/8Dv0g48j4Sao4+AAAAAAAAAABNAS090lmaP95OoD6TjFy/u8odPecrwT0AAAAAAAAAAM0Hj73H5go/W195PN/NSb/p0wO+PVH+OQAAAAAAAAAAM0ysPFybWLqip4i5+vQatbtsXzt+UZ04AACAPwAAgD9Ncys99iR1usG2sbs2l2Y1RnHbuq31y7QAAIA/AACAPxbMg75fH0Y/BreevWSwEb9U2du+A2g8PgAAAAAAAAAA8yIUvtM/5j6axco9eUQZv/WjdL6cZxg+AAAAAAAAAADNtCE8H136ucX2RzPLETkvtcbJOWJSxrMAAIA/AACAP81ZS72D6WS8BtjTPT0m+bo6ipO98nAFvgAAgD8AAIA/Zj25PV83Dz8u06U9+lJEv0eWvj28Mjk9AAAAAAAAAABmFqo7KaBYuuy0LT0aT54x8reLu85/9TMAAIA/AACAP2ZdyzyudZK6pmUms3YENK/z0Kw6lu3HMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIutxgqIORckCUhpRSlIwBbJRLzowBdJRHQJBlhw5vLox1fZQoaAZoCWgPQwhJERlWcRlyQJSGlFKUaBVLsGgWR0CQZZKnNxEOdX2UKGgGaAloD0MISDfCoqK6ckCUhpRSlGgVS89oFkdAkGWVHe7+UHV9lChoBmgJaA9DCDG0OjmDhnJAlIaUUpRoFUvLaBZHQJBlpV3ljmV1fZQoaAZoCWgPQwhGlWHcjUhzQJSGlFKUaBVLsmgWR0CQZfV+Zw4sdX2UKGgGaAloD0MIH2rbMArhcUCUhpRSlGgVS4doFkdAkGYclPacqnV9lChoBmgJaA9DCC6thsT9f3NAlIaUUpRoFUvUaBZHQJBmTZtelbh1fZQoaAZoCWgPQwggYK3aNS5xQJSGlFKUaBVLnmgWR0CQf8ki2UjcdX2UKGgGaAloD0MIaVTgZNt7cECUhpRSlGgVS5ZoFkdAkH/dyDIzWXV9lChoBmgJaA9DCKD6B5EMZHNAlIaUUpRoFUuwaBZHQJCACvr4WUN1fZQoaAZoCWgPQwggfCjREht0QJSGlFKUaBVLzWgWR0CQgC3/xUeddX2UKGgGaAloD0MI8+hGWBSWc0CUhpRSlGgVS61oFkdAkIBeEZiuuHV9lChoBmgJaA9DCFGgT+TJUHNAlIaUUpRoFUvGaBZHQJCAkVRDTjN1fZQoaAZoCWgPQwgi4BCqFFFyQJSGlFKUaBVLtmgWR0CQgOxO+IuXdX2UKGgGaAloD0MIX5uNlViJckCUhpRSlGgVS6JoFkdAkIGoffXPJXV9lChoBmgJaA9DCFXZd0VwF3BAlIaUUpRoFUuUaBZHQJCB1Ec81XN1fZQoaAZoCWgPQwgW+8vuCUVxQJSGlFKUaBVLsmgWR0CQgl2SMcZMdX2UKGgGaAloD0MIp+uJrksJcUCUhpRSlGgVS8BoFkdAkIK2bb1yvXV9lChoBmgJaA9DCCS5/If0cXJAlIaUUpRoFUvZaBZHQJCCud5IH1R1fZQoaAZoCWgPQwjVJk7uNxxyQJSGlFKUaBVLmWgWR0CQgxFAmiQDdX2UKGgGaAloD0MIaqUQyKVlc0CUhpRSlGgVS91oFkdAkIMaaCtihHV9lChoBmgJaA9DCLpOIy0Vym9AlIaUUpRoFUvDaBZHQJCDI3974SJ1fZQoaAZoCWgPQwh/SwD+KYBwQJSGlFKUaBVLnGgWR0CQgztOmBOIdX2UKGgGaAloD0MIJZS+EHKRcUCUhpRSlGgVS8loFkdAkINlvddmhHV9lChoBmgJaA9DCPcA3Zdzr3NAlIaUUpRoFUuwaBZHQJCDawLVnVZ1fZQoaAZoCWgPQwgsSgnBanpyQJSGlFKUaBVL0GgWR0CQg7Ug0TDgdX2UKGgGaAloD0MIiC8TRch5dECUhpRSlGgVS71oFkdAkIPbaM72c3V9lChoBmgJaA9DCFpLAWn/8HFAlIaUUpRoFUu9aBZHQJCEIT+NtIl1fZQoaAZoCWgPQwhYAimxK/JzQJSGlFKUaBVL1GgWR0CQhGieNDMNdX2UKGgGaAloD0MInn5QF+kwcECUhpRSlGgVS6doFkdAkISWXb/OuHV9lChoBmgJaA9DCKExk6gXoHNAlIaUUpRoFUvNaBZHQJCEpUzbeuV1fZQoaAZoCWgPQwjVCP1MvShyQJSGlFKUaBVLmWgWR0CQhPaQmu1XdX2UKGgGaAloD0MIofgx5u5ickCUhpRSlGgVS7xoFkdAkIUMbrC3w3V9lChoBmgJaA9DCClAFMyYDHJAlIaUUpRoFUuWaBZHQJCFM1ejVQR1fZQoaAZoCWgPQwgEIVnABEFyQJSGlFKUaBVLk2gWR0CQhYC4BmwrdX2UKGgGaAloD0MIVDntKfkmcUCUhpRSlGgVS6xoFkdAkIWQQQL/j3V9lChoBmgJaA9DCIvCLooe1nBAlIaUUpRoFUugaBZHQJCFrhMrVe91fZQoaAZoCWgPQwha2NMOPx5zQJSGlFKUaBVLrmgWR0CQhfjwx33YdX2UKGgGaAloD0MIKGTnbexNcUCUhpRSlGgVS8ZoFkdAkIZyrLhaT3V9lChoBmgJaA9DCOzAOSPKm3FAlIaUUpRoFUuhaBZHQJCGd76YVqN1fZQoaAZoCWgPQwhStkjaDfFvQJSGlFKUaBVLmGgWR0CQhpL1VYITdX2UKGgGaAloD0MInPurx72XckCUhpRSlGgVS8doFkdAkIafE0iyIHV9lChoBmgJaA9DCHsUrkchTHNAlIaUUpRoFUvTaBZHQJCG2L1mJ3x1fZQoaAZoCWgPQwhWmSmtvzBzQJSGlFKUaBVL12gWR0CQh0FYdQwcdX2UKGgGaAloD0MIAn/4+S+MckCUhpRSlGgVS6poFkdAkIda5kK/mHV9lChoBmgJaA9DCCMUW0GTuHJAlIaUUpRoFUusaBZHQJCHcl6Z6Ut1fZQoaAZoCWgPQwiG5jqNdEtyQJSGlFKUaBVLv2gWR0CQh4Q7LdN4dX2UKGgGaAloD0MILGFtjB09ckCUhpRSlGgVS8BoFkdAkIgdXo1UEXV9lChoBmgJaA9DCLGnHf4aAXFAlIaUUpRoFUu+aBZHQJCILKPn0TV1fZQoaAZoCWgPQwhkV1pG6uJwQJSGlFKUaBVLlmgWR0CQiCznzQNTdX2UKGgGaAloD0MIARQjS6YCckCUhpRSlGgVS75oFkdAkIismfGuLnV9lChoBmgJaA9DCAQ5KGEm43JAlIaUUpRoFUvWaBZHQJCItCZ4Oc51fZQoaAZoCWgPQwhZNJ2dzGRwQJSGlFKUaBVLk2gWR0CQiQpgTh5xdX2UKGgGaAloD0MIdGIP7WP/cECUhpRSlGgVS6RoFkdAkIklrqMWGnV9lChoBmgJaA9DCPjGEADcbXNAlIaUUpRoFUvfaBZHQJCJJr6+FlF1fZQoaAZoCWgPQwiB0Hr4MutxQJSGlFKUaBVLqmgWR0CQiUNYKYzBdX2UKGgGaAloD0MI3LsGfel8ckCUhpRSlGgVS9BoFkdAkIle6VdHD3V9lChoBmgJaA9DCIF8CRVc/3NAlIaUUpRoFUu/aBZHQJCJsDV6NVB1fZQoaAZoCWgPQwhR9wFIbcNxQJSGlFKUaBVLl2gWR0CQiaqBEroXdX2UKGgGaAloD0MIY3rCEs+hcUCUhpRSlGgVS7hoFkdAkInXazu4PXV9lChoBmgJaA9DCK+zIf+MAXBAlIaUUpRoFUujaBZHQJCJ9G/etS11fZQoaAZoCWgPQwiSk4lbxTlzQJSGlFKUaBVLuGgWR0CQinu+RHPNdX2UKGgGaAloD0MIs5jYfBzCckCUhpRSlGgVS8FoFkdAkIqOryUcGXV9lChoBmgJaA9DCEQxeQNMnG9AlIaUUpRoFUunaBZHQJCK2/fwZwZ1fZQoaAZoCWgPQwgge737o51xQJSGlFKUaBVLrGgWR0CQivETxoZidX2UKGgGaAloD0MIscOY9DexcUCUhpRSlGgVS7poFkdAkIsa+zt1IXV9lChoBmgJaA9DCITXLm04SnBAlIaUUpRoFUujaBZHQJCLVz8xbjd1fZQoaAZoCWgPQwi37BD/cIVwQJSGlFKUaBVLqGgWR0CQi2O7QLNOdX2UKGgGaAloD0MIfJqTFxkcckCUhpRSlGgVS4hoFkdAkIuOhXbM5nV9lChoBmgJaA9DCOf9f5wwA3BAlIaUUpRoFUuWaBZHQJCLjkPtlZp1fZQoaAZoCWgPQwgsnnqkgWVzQJSGlFKUaBVLr2gWR0CQjAdDYywfdX2UKGgGaAloD0MIpgnbT0ZmckCUhpRSlGgVS6JoFkdAkIxBVdX1anV9lChoBmgJaA9DCBJMNbNWIHJAlIaUUpRoFUvJaBZHQJCMXAsTWXl1fZQoaAZoCWgPQwiWJqWgW31xQJSGlFKUaBVLsWgWR0CQjIhkiD/VdX2UKGgGaAloD0MI7zuGxz4Sc0CUhpRSlGgVS9xoFkdAkIyTArQPZ3V9lChoBmgJaA9DCDDxR1HnEHJAlIaUUpRoFUusaBZHQJCMuInBtUJ1fZQoaAZoCWgPQwjkTX6LTiFyQJSGlFKUaBVLlWgWR0CQjOq5byH3dX2UKGgGaAloD0MImL7XEBzRckCUhpRSlGgVS9FoFkdAkI0y2H+IdnV9lChoBmgJaA9DCN3u5T55JnBAlIaUUpRoFUuhaBZHQJCNf7DVH4J1fZQoaAZoCWgPQwg6WtWSjtVyQJSGlFKUaBVLwGgWR0CQjYvllsgudX2UKGgGaAloD0MIw2LUtXa6c0CUhpRSlGgVS7RoFkdAkI27CvX9SHV9lChoBmgJaA9DCBbD1QGQCHFAlIaUUpRoFUuNaBZHQJCN0oVmBe51fZQoaAZoCWgPQwixhovcE+1xQJSGlFKUaBVLtGgWR0CQjfnOjZctdX2UKGgGaAloD0MIIQclzDQ7cUCUhpRSlGgVS6loFkdAkI4HVoYek3V9lChoBmgJaA9DCAvrxrtj0XBAlIaUUpRoFUu1aBZHQJCOR4Y77sR1fZQoaAZoCWgPQwhPkxlvq1tzQJSGlFKUaBVLr2gWR0CQjlzI3irDdX2UKGgGaAloD0MID+1jBb+FckCUhpRSlGgVS4loFkdAkI6Oy7f513V9lChoBmgJaA9DCPrvwWsXwHBAlIaUUpRoFUuUaBZHQJCOoiosI3R1fZQoaAZoCWgPQwhwXpz4KsdyQJSGlFKUaBVLrWgWR0CQjtGCqZMMdX2UKGgGaAloD0MIECGunD2rb0CUhpRSlGgVS4poFkdAkI8YF3Y+S3V9lChoBmgJaA9DCL6h8Nl6h3JAlIaUUpRoFUuvaBZHQJCPT5SFXaJ1fZQoaAZoCWgPQwjy0eKMoYxzQJSGlFKUaBVLtWgWR0CQj5UxVQyidX2UKGgGaAloD0MI7ISX4JQ9ckCUhpRSlGgVS9toFkdAkJAHuNPxhHV9lChoBmgJaA9DCNkmFY31fHJAlIaUUpRoFUuRaBZHQJCQFkCmuT11fZQoaAZoCWgPQwg3iqw11PBxQJSGlFKUaBVLu2gWR0CQkCVQQ+UydX2UKGgGaAloD0MIy/Pg7uxWcECUhpRSlGgVS51oFkdAkJAuyquKXXV9lChoBmgJaA9DCATnjCjtFXBAlIaUUpRoFUuPaBZHQJCQQtNBWxR1fZQoaAZoCWgPQwgm/b0UHnNuQJSGlFKUaBVLwmgWR0CQkJEmplz2dX2UKGgGaAloD0MIJ2co7vjAcUCUhpRSlGgVS7FoFkdAkJC4CEHt4XV9lChoBmgJaA9DCOvld5oMd3NAlIaUUpRoFUvTaBZHQJCQySeRPoF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1056, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 288.93614084034004, "std_reward": 15.016543892115484, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T09:26:07.091435"}
 
1
+ {"mean_reward": 295.4103157251709, "std_reward": 12.351439537957509, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T09:44:17.477219"}
shortLunarLander995v7.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8728f3b297e73a3373d0d8103b927cce6f450f9b04987f702349bfcc0d8466ef
3
+ size 147424
shortLunarLander995v7/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
shortLunarLander995v7/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3735e5c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3735e5ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3735e5d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3735e5dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff3735e5e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff3735e5ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff3735e5f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3735ea040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff3735ea0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3735ea160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3735ea1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3735ea280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ff3735e7880>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 507904,
47
+ "_total_timesteps": 500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678786655890055852,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbZAT5KhJg/mrTZPvrbNb/UVx8+p4RMPgAAAAAAAAAAmjlyujyqdj4+Ahw9kzcZvyKTBb0xoh89AAAAAAAAAABaLOI9GUKTP8UiET/NgEa/JW7/PfJpkT4AAAAAAAAAAIAR4T1W0TE9zBi2vmEEt74mNDq+dj4LvgAAAAAAAAAAyn2HPk5Bhz++9aM+p/8Dv0g48j4Sao4+AAAAAAAAAABNAS090lmaP95OoD6TjFy/u8odPecrwT0AAAAAAAAAAM0Hj73H5go/W195PN/NSb/p0wO+PVH+OQAAAAAAAAAAM0ysPFybWLqip4i5+vQatbtsXzt+UZ04AACAPwAAgD9Ncys99iR1usG2sbs2l2Y1RnHbuq31y7QAAIA/AACAPxbMg75fH0Y/BreevWSwEb9U2du+A2g8PgAAAAAAAAAA8yIUvtM/5j6axco9eUQZv/WjdL6cZxg+AAAAAAAAAADNtCE8H136ucX2RzPLETkvtcbJOWJSxrMAAIA/AACAP81ZS72D6WS8BtjTPT0m+bo6ipO98nAFvgAAgD8AAIA/Zj25PV83Dz8u06U9+lJEv0eWvj28Mjk9AAAAAAAAAABmFqo7KaBYuuy0LT0aT54x8reLu85/9TMAAIA/AACAP2ZdyzyudZK6pmUms3YENK/z0Kw6lu3HMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIutxgqIORckCUhpRSlIwBbJRLzowBdJRHQJBlhw5vLox1fZQoaAZoCWgPQwhJERlWcRlyQJSGlFKUaBVLsGgWR0CQZZKnNxEOdX2UKGgGaAloD0MISDfCoqK6ckCUhpRSlGgVS89oFkdAkGWVHe7+UHV9lChoBmgJaA9DCDG0OjmDhnJAlIaUUpRoFUvLaBZHQJBlpV3ljmV1fZQoaAZoCWgPQwhGlWHcjUhzQJSGlFKUaBVLsmgWR0CQZfV+Zw4sdX2UKGgGaAloD0MIH2rbMArhcUCUhpRSlGgVS4doFkdAkGYclPacqnV9lChoBmgJaA9DCC6thsT9f3NAlIaUUpRoFUvUaBZHQJBmTZtelbh1fZQoaAZoCWgPQwggYK3aNS5xQJSGlFKUaBVLnmgWR0CQf8ki2UjcdX2UKGgGaAloD0MIaVTgZNt7cECUhpRSlGgVS5ZoFkdAkH/dyDIzWXV9lChoBmgJaA9DCKD6B5EMZHNAlIaUUpRoFUuwaBZHQJCACvr4WUN1fZQoaAZoCWgPQwggfCjREht0QJSGlFKUaBVLzWgWR0CQgC3/xUeddX2UKGgGaAloD0MI8+hGWBSWc0CUhpRSlGgVS61oFkdAkIBeEZiuuHV9lChoBmgJaA9DCFGgT+TJUHNAlIaUUpRoFUvGaBZHQJCAkVRDTjN1fZQoaAZoCWgPQwgi4BCqFFFyQJSGlFKUaBVLtmgWR0CQgOxO+IuXdX2UKGgGaAloD0MIX5uNlViJckCUhpRSlGgVS6JoFkdAkIGoffXPJXV9lChoBmgJaA9DCFXZd0VwF3BAlIaUUpRoFUuUaBZHQJCB1Ec81XN1fZQoaAZoCWgPQwgW+8vuCUVxQJSGlFKUaBVLsmgWR0CQgl2SMcZMdX2UKGgGaAloD0MIp+uJrksJcUCUhpRSlGgVS8BoFkdAkIK2bb1yvXV9lChoBmgJaA9DCCS5/If0cXJAlIaUUpRoFUvZaBZHQJCCud5IH1R1fZQoaAZoCWgPQwjVJk7uNxxyQJSGlFKUaBVLmWgWR0CQgxFAmiQDdX2UKGgGaAloD0MIaqUQyKVlc0CUhpRSlGgVS91oFkdAkIMaaCtihHV9lChoBmgJaA9DCLpOIy0Vym9AlIaUUpRoFUvDaBZHQJCDI3974SJ1fZQoaAZoCWgPQwh/SwD+KYBwQJSGlFKUaBVLnGgWR0CQgztOmBOIdX2UKGgGaAloD0MIJZS+EHKRcUCUhpRSlGgVS8loFkdAkINlvddmhHV9lChoBmgJaA9DCPcA3Zdzr3NAlIaUUpRoFUuwaBZHQJCDawLVnVZ1fZQoaAZoCWgPQwgsSgnBanpyQJSGlFKUaBVL0GgWR0CQg7Ug0TDgdX2UKGgGaAloD0MIiC8TRch5dECUhpRSlGgVS71oFkdAkIPbaM72c3V9lChoBmgJaA9DCFpLAWn/8HFAlIaUUpRoFUu9aBZHQJCEIT+NtIl1fZQoaAZoCWgPQwhYAimxK/JzQJSGlFKUaBVL1GgWR0CQhGieNDMNdX2UKGgGaAloD0MInn5QF+kwcECUhpRSlGgVS6doFkdAkISWXb/OuHV9lChoBmgJaA9DCKExk6gXoHNAlIaUUpRoFUvNaBZHQJCEpUzbeuV1fZQoaAZoCWgPQwjVCP1MvShyQJSGlFKUaBVLmWgWR0CQhPaQmu1XdX2UKGgGaAloD0MIofgx5u5ickCUhpRSlGgVS7xoFkdAkIUMbrC3w3V9lChoBmgJaA9DCClAFMyYDHJAlIaUUpRoFUuWaBZHQJCFM1ejVQR1fZQoaAZoCWgPQwgEIVnABEFyQJSGlFKUaBVLk2gWR0CQhYC4BmwrdX2UKGgGaAloD0MIVDntKfkmcUCUhpRSlGgVS6xoFkdAkIWQQQL/j3V9lChoBmgJaA9DCIvCLooe1nBAlIaUUpRoFUugaBZHQJCFrhMrVe91fZQoaAZoCWgPQwha2NMOPx5zQJSGlFKUaBVLrmgWR0CQhfjwx33YdX2UKGgGaAloD0MIKGTnbexNcUCUhpRSlGgVS8ZoFkdAkIZyrLhaT3V9lChoBmgJaA9DCOzAOSPKm3FAlIaUUpRoFUuhaBZHQJCGd76YVqN1fZQoaAZoCWgPQwhStkjaDfFvQJSGlFKUaBVLmGgWR0CQhpL1VYITdX2UKGgGaAloD0MInPurx72XckCUhpRSlGgVS8doFkdAkIafE0iyIHV9lChoBmgJaA9DCHsUrkchTHNAlIaUUpRoFUvTaBZHQJCG2L1mJ3x1fZQoaAZoCWgPQwhWmSmtvzBzQJSGlFKUaBVL12gWR0CQh0FYdQwcdX2UKGgGaAloD0MIAn/4+S+MckCUhpRSlGgVS6poFkdAkIda5kK/mHV9lChoBmgJaA9DCCMUW0GTuHJAlIaUUpRoFUusaBZHQJCHcl6Z6Ut1fZQoaAZoCWgPQwiG5jqNdEtyQJSGlFKUaBVLv2gWR0CQh4Q7LdN4dX2UKGgGaAloD0MILGFtjB09ckCUhpRSlGgVS8BoFkdAkIgdXo1UEXV9lChoBmgJaA9DCLGnHf4aAXFAlIaUUpRoFUu+aBZHQJCILKPn0TV1fZQoaAZoCWgPQwhkV1pG6uJwQJSGlFKUaBVLlmgWR0CQiCznzQNTdX2UKGgGaAloD0MIARQjS6YCckCUhpRSlGgVS75oFkdAkIismfGuLnV9lChoBmgJaA9DCAQ5KGEm43JAlIaUUpRoFUvWaBZHQJCItCZ4Oc51fZQoaAZoCWgPQwhZNJ2dzGRwQJSGlFKUaBVLk2gWR0CQiQpgTh5xdX2UKGgGaAloD0MIdGIP7WP/cECUhpRSlGgVS6RoFkdAkIklrqMWGnV9lChoBmgJaA9DCPjGEADcbXNAlIaUUpRoFUvfaBZHQJCJJr6+FlF1fZQoaAZoCWgPQwiB0Hr4MutxQJSGlFKUaBVLqmgWR0CQiUNYKYzBdX2UKGgGaAloD0MI3LsGfel8ckCUhpRSlGgVS9BoFkdAkIle6VdHD3V9lChoBmgJaA9DCIF8CRVc/3NAlIaUUpRoFUu/aBZHQJCJsDV6NVB1fZQoaAZoCWgPQwhR9wFIbcNxQJSGlFKUaBVLl2gWR0CQiaqBEroXdX2UKGgGaAloD0MIY3rCEs+hcUCUhpRSlGgVS7hoFkdAkInXazu4PXV9lChoBmgJaA9DCK+zIf+MAXBAlIaUUpRoFUujaBZHQJCJ9G/etS11fZQoaAZoCWgPQwiSk4lbxTlzQJSGlFKUaBVLuGgWR0CQinu+RHPNdX2UKGgGaAloD0MIs5jYfBzCckCUhpRSlGgVS8FoFkdAkIqOryUcGXV9lChoBmgJaA9DCEQxeQNMnG9AlIaUUpRoFUunaBZHQJCK2/fwZwZ1fZQoaAZoCWgPQwgge737o51xQJSGlFKUaBVLrGgWR0CQivETxoZidX2UKGgGaAloD0MIscOY9DexcUCUhpRSlGgVS7poFkdAkIsa+zt1IXV9lChoBmgJaA9DCITXLm04SnBAlIaUUpRoFUujaBZHQJCLVz8xbjd1fZQoaAZoCWgPQwi37BD/cIVwQJSGlFKUaBVLqGgWR0CQi2O7QLNOdX2UKGgGaAloD0MIfJqTFxkcckCUhpRSlGgVS4hoFkdAkIuOhXbM5nV9lChoBmgJaA9DCOf9f5wwA3BAlIaUUpRoFUuWaBZHQJCLjkPtlZp1fZQoaAZoCWgPQwgsnnqkgWVzQJSGlFKUaBVLr2gWR0CQjAdDYywfdX2UKGgGaAloD0MIpgnbT0ZmckCUhpRSlGgVS6JoFkdAkIxBVdX1anV9lChoBmgJaA9DCBJMNbNWIHJAlIaUUpRoFUvJaBZHQJCMXAsTWXl1fZQoaAZoCWgPQwiWJqWgW31xQJSGlFKUaBVLsWgWR0CQjIhkiD/VdX2UKGgGaAloD0MI7zuGxz4Sc0CUhpRSlGgVS9xoFkdAkIyTArQPZ3V9lChoBmgJaA9DCDDxR1HnEHJAlIaUUpRoFUusaBZHQJCMuInBtUJ1fZQoaAZoCWgPQwjkTX6LTiFyQJSGlFKUaBVLlWgWR0CQjOq5byH3dX2UKGgGaAloD0MImL7XEBzRckCUhpRSlGgVS9FoFkdAkI0y2H+IdnV9lChoBmgJaA9DCN3u5T55JnBAlIaUUpRoFUuhaBZHQJCNf7DVH4J1fZQoaAZoCWgPQwg6WtWSjtVyQJSGlFKUaBVLwGgWR0CQjYvllsgudX2UKGgGaAloD0MIw2LUtXa6c0CUhpRSlGgVS7RoFkdAkI27CvX9SHV9lChoBmgJaA9DCBbD1QGQCHFAlIaUUpRoFUuNaBZHQJCN0oVmBe51fZQoaAZoCWgPQwixhovcE+1xQJSGlFKUaBVLtGgWR0CQjfnOjZctdX2UKGgGaAloD0MIIQclzDQ7cUCUhpRSlGgVS6loFkdAkI4HVoYek3V9lChoBmgJaA9DCAvrxrtj0XBAlIaUUpRoFUu1aBZHQJCOR4Y77sR1fZQoaAZoCWgPQwhPkxlvq1tzQJSGlFKUaBVLr2gWR0CQjlzI3irDdX2UKGgGaAloD0MID+1jBb+FckCUhpRSlGgVS4loFkdAkI6Oy7f513V9lChoBmgJaA9DCPrvwWsXwHBAlIaUUpRoFUuUaBZHQJCOoiosI3R1fZQoaAZoCWgPQwhwXpz4KsdyQJSGlFKUaBVLrWgWR0CQjtGCqZMMdX2UKGgGaAloD0MIECGunD2rb0CUhpRSlGgVS4poFkdAkI8YF3Y+S3V9lChoBmgJaA9DCL6h8Nl6h3JAlIaUUpRoFUuvaBZHQJCPT5SFXaJ1fZQoaAZoCWgPQwjy0eKMoYxzQJSGlFKUaBVLtWgWR0CQj5UxVQyidX2UKGgGaAloD0MI7ISX4JQ9ckCUhpRSlGgVS9toFkdAkJAHuNPxhHV9lChoBmgJaA9DCNkmFY31fHJAlIaUUpRoFUuRaBZHQJCQFkCmuT11fZQoaAZoCWgPQwg3iqw11PBxQJSGlFKUaBVLu2gWR0CQkCVQQ+UydX2UKGgGaAloD0MIy/Pg7uxWcECUhpRSlGgVS51oFkdAkJAuyquKXXV9lChoBmgJaA9DCATnjCjtFXBAlIaUUpRoFUuPaBZHQJCQQtNBWxR1fZQoaAZoCWgPQwgm/b0UHnNuQJSGlFKUaBVLwmgWR0CQkJEmplz2dX2UKGgGaAloD0MIJ2co7vjAcUCUhpRSlGgVS7FoFkdAkJC4CEHt4XV9lChoBmgJaA9DCOvld5oMd3NAlIaUUpRoFUvTaBZHQJCQySeRPoF1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 1056,
80
+ "n_steps": 1024,
81
+ "gamma": 0.995,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
shortLunarLander995v7/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:526f717226c3171b8104018d293f9b5e40f93e6907398826d013fbfcfc69e742
3
+ size 88057
shortLunarLander995v7/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26ea2a48528d94431955828d12bf29bb7cda43fe092af0e1a9737d9cee1401f0
3
+ size 43393
shortLunarLander995v7/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
shortLunarLander995v7/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0