yujuanqin's picture
add asr test
db0d138
from pathlib import Path
import json
from transformers.models.mamba2.modeling_mamba2 import segment_sum
from lib.utils import cmd
from environment import TEST_DATA
def read_recording(folder: Path=TEST_DATA/"recordings", count_limit=None):
"""读取录音文件夹,返回音频路径、文本,
"""
data_file = folder / 'data.json'
with open(data_file, encoding='utf-8') as f:
data = json.load(f)
count = 0
for filename, text in data.items():
count += 1
if count_limit and count > count_limit:
break
wav_path = folder / filename
yield wav_path, text
def read_dataset(folder: Path= TEST_DATA / "AIShell", count_limit=None):
"""line sample: {"audio": {"path": "dataset/audio/data_aishell/wav/test/S0916/BAC009S0916W0158.wav"}, "sentence": "顾客体验的核心是真善美", "duration": 3.22, "sentences": [{"start": 0, "end": 3.22, "text": "顾客体验的核心是真善美"}]}"""
with open(folder / "dataset/dataset.txt") as f:
lines =f.readlines()
count = 0
for line in lines:
if count_limit and count > count_limit:
break
count += 1
line = line.strip()
if not line:
continue
data = json.loads(line)
yield folder / data["audio"]["path"], data["sentence"]
def read_emilia(folder: Path=TEST_DATA/"ZH-B000000", count_limit=None):
"""读取 emilia 数据集,返回音频路径、文本,
json 文件样例:
{"id": "ZH_B00000_S00110_W000000", "wav": "ZH_B00000/ZH_B00000_S00110/mp3/ZH_B00000_S00110_W000000.mp3", "text": "\u628a\u63e1\u6700\u524d\u6cbf\u7684\u91d1\u878d\u9886\u57df\u548c\u533a\u5757\u94fe\u6700\u65b0\u8d44\u8baf\u3002\u6211\u4eec\u4e00\u8d77\u6765\u4e86\u89e3\u4e00\u4e0b\u4eca\u5929\u5e02\u573a\u4e0a\u6709\u53d1\u751f\u54ea\u4e9b\u91cd\u8981\u4e8b\u4ef6\u3002", "duration": 7.963, "speaker": "ZH_B00000_S00110", "language": "zh", "dnsmos": 3.3808}"""
count = 0
for json_file in sorted(folder.glob("*.json")):
count += 1
if count_limit and count > count_limit:
break
with open(json_file, encoding="utf-8") as f:
data = json.load(f)
text = data["text"]
duration = data["duration"]
wav_path = folder /f'{json_file.stem}.wav'
if not wav_path.exists():
mp3_path = folder / f'{json_file.stem}.mp3'
command=f"ffmpeg -i {mp3_path} -ac 1 -ar 16000 {wav_path}"
cmd(command)
yield wav_path, text
def read_wenet(folder: Path=TEST_DATA/"wenet", json_file="WenetSpeech_TEST_NET.json", count_limit=None):
"""读取 wenet 数据集,返回音频路径、文本,
"""
count = 0
with open(folder/json_file, encoding="utf-8") as f:
data = json.load(f)
audios = data["audios"]
for a in audios:
audio_file = Path(folder/a['path'])
if len(a["segments"])>=100: # 限制音频数量, 2985
continue
for seg in a["segments"]:
if count > count_limit:
return
seg_file = audio_file.parent / (seg["sid"]+".wav")
if not seg_file.exists():
command = f"ffmpeg -i {audio_file} -ar 16000 -ac 1 -ss {seg['begin_time']} -to {seg['end_time']} {seg_file}"
cmd(command)
count +=1
yield seg_file, seg["text"]
def read_libri(folder: Path=TEST_DATA/"LibriSpeech/test-clean", count_limit=None):
"""读取 libri 数据集,返回音频路径、文本,
"""
count = 0
for trans_file in sorted(folder.rglob("*trans.txt")):
with open(trans_file, encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
if count_limit and count >= count_limit:
return
parts = line.strip().split(" ", 1)
if len(parts) != 2:
print("Invalid line:", line)
continue
file_id, text = parts
# speaker_id = file_id.split("-")[0]
flac_path = trans_file.parent / (file_id + ".flac")
wav_path = flac_path.with_suffix(".wav")
if not wav_path.exists():
command = f"ffmpeg -i {flac_path} -ar 16000 -ac 1 {wav_path}"
cmd(command)
count += 1
yield wav_path, text
if __name__ == '__main__':
read_wenet()