yujiepan commited on
Commit
98efed6
·
verified ·
1 Parent(s): 29d660f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -194
README.md CHANGED
@@ -2,197 +2,159 @@
2
  library_name: diffusers
3
  ---
4
 
5
- # Model Card for Model ID
6
-
7
- <!-- Provide a quick summary of what the model is/does. -->
8
-
9
-
10
-
11
- ## Model Details
12
-
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
- This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
-
27
- ### Model Sources [optional]
28
-
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
-
35
- ## Uses
36
-
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
-
69
- ## How to Get Started with the Model
70
-
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
-
75
- ## Training Details
76
-
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
-
102
- ## Evaluation
103
-
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
-
106
- ### Testing Data, Factors & Metrics
107
-
108
- #### Testing Data
109
-
110
- <!-- This should link to a Dataset Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Results
127
-
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
-
154
- ### Model Architecture and Objective
155
-
156
- [More Information Needed]
157
-
158
- ### Compute Infrastructure
159
-
160
- [More Information Needed]
161
-
162
- #### Hardware
163
-
164
- [More Information Needed]
165
-
166
- #### Software
167
-
168
- [More Information Needed]
169
-
170
- ## Citation [optional]
171
-
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
-
174
- **BibTeX:**
175
-
176
- [More Information Needed]
177
-
178
- **APA:**
179
-
180
- [More Information Needed]
181
-
182
- ## Glossary [optional]
183
-
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
-
186
- [More Information Needed]
187
-
188
- ## More Information [optional]
189
-
190
- [More Information Needed]
191
-
192
- ## Model Card Authors [optional]
193
-
194
- [More Information Needed]
195
-
196
- ## Model Card Contact
197
-
198
- [More Information Needed]
 
2
  library_name: diffusers
3
  ---
4
 
5
+ # yujiepan/stable-diffusion-3-tiny-random
6
+
7
+ This pipeline is intended from debugging. It is adapted from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) with smaller size and randomly initialized parameters.
8
+
9
+ ## Usage
10
+ ```python
11
+ import torch
12
+ from diffusers import FluxPipeline
13
+
14
+ pipe = FluxPipeline.from_pretrained("yujiepan/FLUX.1-dev-tiny-random", torch_dtype=torch.bfloat16)
15
+ pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power
16
+ prompt = "A cat holding a sign that says hello world"
17
+ image = pipe(
18
+ prompt,
19
+ height=1024,
20
+ width=1024,
21
+ guidance_scale=3.5,
22
+ num_inference_steps=50,
23
+ max_sequence_length=512,
24
+ generator=torch.Generator("cpu").manual_seed(0)
25
+ ).images[0]
26
+ # image.save("flux-dev.png")
27
+ ```
28
+
29
+ ## Codes
30
+ ```python
31
+ import importlib
32
+
33
+ import torch
34
+ import transformers
35
+
36
+ import diffusers
37
+ import rich
38
+
39
+
40
+ def get_original_model_configs(
41
+ pipeline_cls: type[diffusers.FluxPipeline],
42
+ pipeline_id: str
43
+ ):
44
+ pipeline_config: dict[str, list[str]] = \
45
+ pipeline_cls.load_config(pipeline_id)
46
+ model_configs = {}
47
+
48
+ for subfolder, import_strings in pipeline_config.items():
49
+ if subfolder.startswith("_"):
50
+ continue
51
+ module = importlib.import_module(".".join(import_strings[:-1]))
52
+ cls = getattr(module, import_strings[-1])
53
+ if issubclass(cls, transformers.PreTrainedModel):
54
+ config_class: transformers.PretrainedConfig = cls.config_class
55
+ config = config_class.from_pretrained(
56
+ pipeline_id, subfolder=subfolder)
57
+ model_configs[subfolder] = config
58
+ elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
59
+ config = cls.load_config(pipeline_id, subfolder=subfolder)
60
+ model_configs[subfolder] = config
61
+ elif subfolder in ['scheduler', 'tokenizer', 'tokenizer_2', 'tokenizer_3']:
62
+ pass
63
+ else:
64
+ raise NotImplementedError(f"unknown {subfolder}: {import_strings}")
65
+
66
+ return model_configs
67
+
68
+
69
+ def load_pipeline(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str, model_configs: dict[str, dict]):
70
+ pipeline_config: dict[str, list[str]
71
+ ] = pipeline_cls.load_config(pipeline_id)
72
+ components = {}
73
+ for subfolder, import_strings in pipeline_config.items():
74
+ if subfolder.startswith("_"):
75
+ continue
76
+ module = importlib.import_module(".".join(import_strings[:-1]))
77
+ cls = getattr(module, import_strings[-1])
78
+ print(f"Loading:", ".".join(import_strings))
79
+ if issubclass(cls, transformers.PreTrainedModel):
80
+ config = model_configs[subfolder]
81
+ component = cls(config)
82
+ elif issubclass(cls, transformers.PreTrainedTokenizerBase):
83
+ component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
84
+ elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
85
+ config = model_configs[subfolder]
86
+ component = cls.from_config(config)
87
+ elif issubclass(cls, diffusers.SchedulerMixin) and issubclass(cls, diffusers.ConfigMixin):
88
+ component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
89
+ else:
90
+ raise (f"unknown {subfolder}: {import_strings}")
91
+ components[subfolder] = component
92
+ if 'transformer' in component.__class__.__name__.lower():
93
+ print(component)
94
+ pipeline = pipeline_cls(**components)
95
+ return pipeline
96
+
97
+
98
+ def get_pipeline():
99
+ torch.manual_seed(42)
100
+ pipeline_id = "black-forest-labs/FLUX.1-dev"
101
+ pipeline_cls = diffusers.FluxPipeline
102
+ model_configs = get_original_model_configs(pipeline_cls, pipeline_id)
103
+
104
+ HIDDEN_SIZE = 8
105
+ model_configs["text_encoder"].hidden_size = HIDDEN_SIZE
106
+ model_configs["text_encoder"].intermediate_size = HIDDEN_SIZE * 2
107
+ model_configs["text_encoder"].num_attention_heads = 2
108
+ model_configs["text_encoder"].num_hidden_layers = 2
109
+ model_configs["text_encoder"].projection_dim = HIDDEN_SIZE
110
+
111
+ model_configs["text_encoder_2"].d_model = HIDDEN_SIZE
112
+ model_configs["text_encoder_2"].d_ff = HIDDEN_SIZE * 2
113
+ model_configs["text_encoder_2"].d_kv = HIDDEN_SIZE // 2
114
+ model_configs["text_encoder_2"].num_heads = 2
115
+ model_configs["text_encoder_2"].num_layers = 2
116
+
117
+ model_configs["transformer"]["num_layers"] = 2
118
+ model_configs["transformer"]["num_single_layers"] = 4
119
+ model_configs["transformer"]["num_attention_heads"] = 2
120
+ model_configs["transformer"]["attention_head_dim"] = HIDDEN_SIZE
121
+ model_configs["transformer"]["pooled_projection_dim"] = HIDDEN_SIZE
122
+ model_configs["transformer"]["joint_attention_dim"] = HIDDEN_SIZE
123
+ model_configs["transformer"]["axes_dims_rope"] = (4, 2, 2)
124
+ # model_configs["transformer"]["caption_projection_dim"] = HIDDEN_SIZE
125
+
126
+ model_configs["vae"]["layers_per_block"] = 1
127
+ model_configs["vae"]["block_out_channels"] = [HIDDEN_SIZE] * 4
128
+ model_configs["vae"]["norm_num_groups"] = 2
129
+ model_configs["vae"]["latent_channels"] = 16
130
+
131
+ pipeline = load_pipeline(pipeline_cls, pipeline_id, model_configs)
132
+ return pipeline
133
+
134
+
135
+ pipe = get_pipeline()
136
+ pipe = pipe.to(torch.bfloat16)
137
+
138
+ from pathlib import Path
139
+ save_folder = '/tmp/yujiepan/FLUX.1-dev-tiny-random'
140
+ Path(save_folder).mkdir(parents=True, exist_ok=True)
141
+ pipe.save_pretrained(save_folder)
142
+
143
+ pipe = diffusers.FluxPipeline.from_pretrained(save_folder, torch_dtype=torch.bfloat16)
144
+ pipe.enable_model_cpu_offload()
145
+ prompt = "A cat holding a sign that says hello world"
146
+ image = pipe(
147
+ prompt,
148
+ height=1024,
149
+ width=1024,
150
+ guidance_scale=3.5,
151
+ num_inference_steps=50,
152
+ max_sequence_length=512,
153
+ generator=torch.Generator("cpu").manual_seed(0)
154
+ ).images[0]
155
+
156
+ configs = get_original_model_configs(diffusers.FluxPipeline, save_folder)
157
+ rich.print(configs)
158
+
159
+ pipe.push_to_hub(save_folder.removeprefix('/tmp/'))
160
+ ```