Upload 2 files
Browse files- entity_type.py +47 -0
- entity_type_demo.png +0 -0
entity_type.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from rwkv.model import RWKV
|
2 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# download models: https://huggingface.co/BlinkDL
|
6 |
+
model = RWKV(model='/home/rwkv/Peter/model/base/RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth', strategy='cuda fp16')
|
7 |
+
print(model.args)
|
8 |
+
pipeline = PIPELINE(model, "rwkv_vocab_v20230424") # 20B_tokenizer.json is in https://github.com/BlinkDL/ChatRWKV
|
9 |
+
# use pipeline = PIPELINE(model, "rwkv_vocab_v20230424") for rwkv "world" models
|
10 |
+
states_file = '/home/rwkv/Peter/rwkv_graphrag/agents/entity_type_extraction/RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth.pth'
|
11 |
+
states = torch.load(states_file)
|
12 |
+
states_value = []
|
13 |
+
device = 'cuda'
|
14 |
+
n_head = model.args.n_head
|
15 |
+
head_size = model.args.n_embd//model.args.n_head
|
16 |
+
for i in range(model.args.n_layer):
|
17 |
+
key = f'blocks.{i}.att.time_state'
|
18 |
+
value = states[key]
|
19 |
+
prev_x = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16)
|
20 |
+
prev_states = value.clone().detach().to(device=device,dtype=torch.float16).transpose(1,2)
|
21 |
+
prev_ffn = torch.zeros(model.args.n_embd,device=device,dtype=torch.float16)
|
22 |
+
states_value.append(prev_x)
|
23 |
+
states_value.append(prev_states)
|
24 |
+
states_value.append(prev_ffn)
|
25 |
+
|
26 |
+
cat_char = '🐱'
|
27 |
+
bot_char = '🤖'
|
28 |
+
instruction ='根据input中的领域和任务,协助用户识别input文本中存在的实体类型。 实体类型必须与用户任务相关。 避免使用诸如“其他”或“未知”的通用实体类型。 非常重要的是:不要生成冗余或重叠的实体类型。用JSON格式输出。'
|
29 |
+
input_text = '{"领域": "文学与神话", "专家": "文学史学者/神话学家", "任务": ["分析《石头记》的历史背景和影响", "研究《红楼梦》与《金陵十二钗》之间的关系", "探讨东鲁孔梅溪对《石头记》的改编过程", "解析吴玉峰在《红楼梦》中的角色和贡献", "评估曹雪芹在《悼红轩中披阅十五间》中的写作技巧"]}'
|
30 |
+
ctx = f'{cat_char}:{instruction}\n{input_text}\n{bot_char}:'
|
31 |
+
print(ctx)
|
32 |
+
|
33 |
+
def my_print(s):
|
34 |
+
print(s, end='', flush=True)
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
args = PIPELINE_ARGS(temperature = 1, top_p = 0.2, top_k = 0, # top_k = 0 then ignore
|
39 |
+
alpha_frequency = 0.5,
|
40 |
+
alpha_presence = 0.5,
|
41 |
+
alpha_decay = 0.998, # gradually decay the penalty
|
42 |
+
token_ban = [0], # ban the generation of some tokens
|
43 |
+
token_stop = [0,1], # stop generation whenever you see any token here
|
44 |
+
chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower)
|
45 |
+
|
46 |
+
pipeline.generate(ctx, token_count=200, args=args, callback=my_print,state=states_value)
|
47 |
+
print('\n')
|
entity_type_demo.png
ADDED