yuexishuihan's picture
huggingface RL course first stage
c5144c6
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bf1108a6170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bf1108a6200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bf1108a6290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bf1108a6320>", "_build": "<function ActorCriticPolicy._build at 0x7bf1108a63b0>", "forward": "<function ActorCriticPolicy.forward at 0x7bf1108a6440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bf1108a64d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bf1108a6560>", "_predict": "<function ActorCriticPolicy._predict at 0x7bf1108a65f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bf1108a6680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bf1108a6710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bf1108a67a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bf110845000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698309991388169990, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1GWL32FHm6E1eXuHeiibPeiaa60hGxNwAAgD8AAIA/TQ5MPVz7WLq6YRw6or0FNj1IPDr/nTa5AACAPwAAgD/m1JC9zdVEPhCcnT3nQkq+gOmsPFXQJj0AAAAAAAAAADMbTL3h0Ji6qNMkOI1qJDOlqKW6+rU9twAAgD8AAIA/k8NVvhfqVz9Ismu9vT6Mvt+r1r3WRLU9AAAAAAAAAADNLE27j+JFupbgTbhmtgiyiTL/Otq0bzcAAIA/AACAPwAgVLz2lHe6fnpmuuaHizSIV0O7njKGOQAAgD8AAIA/U1covgofaruPwKg53n7RNkkVuzyyn8e4AACAPwAAgD/AIvA9/sinP6iYVj4zhYy+z0HwPSCAXLsAAAAAAAAAAAAYfTuPbnq6hjePujfOUbXMXJa4LeimOQAAgD8AAIA/hsJPvjT6nz9+m+i+5mesvs+piL7ZfLe8AAAAAAAAAADz5IK9CnS/P7DGd76jY0C+naUGvqFgwr0AAAAAAAAAAM2jjbzDaT66c8TeuqB0orXSlc464RUBOgAAgD8AAIA/M7DvvCmwLbql2Fw68yCSNVEEZ7kQ3Xy5AACAPwAAgD+zV6m99uhKutugYTV20ucw83QhO/WqlbQAAIA/AACAPzM3V72ux9Q3Rf7huvWbpbWIr4m7bBoFOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGOyqHGjsUuMAWyUTegDjAF0lEdAl/fvOUt7KXV9lChoBkdAY1jMajvd/WgHTegDaAhHQJf6WEkB0ZF1fZQoaAZHQGWK3fAKv3doB03oA2gIR0CYA1az/p+udX2UKGgGR0Bk9qwKSgXeaAdN6ANoCEdAmA3ddu5z53V9lChoBkdAYaXCLMs6JmgHTegDaAhHQJgVAjSofjl1fZQoaAZHQGOhgcDKYAtoB03oA2gIR0CYFwAYHgP3dX2UKGgGR0BlYK57PY4AaAdN6ANoCEdAmCUjB68g6nV9lChoBkdAYfgpd8iOemgHTegDaAhHQJgpbbO/tY11fZQoaAZHQGbpzSLIgeRoB03oA2gIR0CYLPqrR0EHdX2UKGgGR0BjIp68g6ltaAdN6ANoCEdAmC/b4etCA3V9lChoBkdAX8QuUUwi7mgHTegDaAhHQJgzXV+Zw4t1fZQoaAZHQDoJA0Kqn3toB0v/aAhHQJhHCxkd3jd1fZQoaAZHQGBeqIi1RchoB03oA2gIR0CYSq2tMfzSdX2UKGgGR0BlMw3974SIaAdN6ANoCEdAmEugWrOqvXV9lChoBkdAY0Ko60Y0mGgHTegDaAhHQJhMPq+rU9Z1fZQoaAZHQGEnOsDGLk1oB03oA2gIR0CYTJCiyprDdX2UKGgGR0BVg67I1cdHaAdNMQFoCEdAmE9uc6Nly3V9lChoBkdAYyzv60pmVmgHTegDaAhHQJhQXGza9K51fZQoaAZHQGEMhOP/7zloB03oA2gIR0CYUfthNM4+dX2UKGgGR0Bkl2dEsrd4aAdN6ANoCEdAmFT0XUH6dnV9lChoBkdAXxa0Xxe9jGgHTegDaAhHQJhhlsabWmR1fZQoaAZHQGIsJXhfjS5oB03oA2gIR0CYbk6aLGaQdX2UKGgGR0BkquEVWS2ZaAdN6ANoCEdAmHR/Ru0kW3V9lChoBkdAXT9gLJCBw2gHTegDaAhHQJh2KzmfXf91fZQoaAZHQFP6BJ7LMcJoB0vjaAhHQJiG6WfK6nR1fZQoaAZHQGR5SBTXJ5poB03oA2gIR0CYiYQ7tAs1dX2UKGgGR0BlqyLhrFfiaAdN6ANoCEdAmI0TFQ2uPnV9lChoBkdAZD780DU3GWgHTegDaAhHQJiR/GXHBDZ1fZQoaAZHQGG2f6oESuhoB03oA2gIR0CYld+dsi0OdX2UKGgGR0BnbTNbC79RaAdN6ANoCEdAmK1KfOD8L3V9lChoBkdAZRSG5+Ytx2gHTegDaAhHQJiuCzlcQiB1fZQoaAZHQGKLCONo8IRoB03oA2gIR0CYrpDyOJcgdX2UKGgGR0BiCKqKgqVhaAdN6ANoCEdAmK7QQHzH0nV9lChoBkdAZArg7YChe2gHTegDaAhHQJiwtcs189h1fZQoaAZHQGJqCiAUcn5oB03oA2gIR0CYsUuHvc8DdX2UKGgGR0BknFhoduHfaAdN6ANoCEdAmLJDEFW4mXV9lChoBkdAY4SsyzollmgHTegDaAhHQJi0IOjIq9Z1fZQoaAZHQGS0TRhMJyBoB03oA2gIR0CYvBbKifxudX2UKGgGR0BfOKtHQQcxaAdN6ANoCEdAmMexCMPz4HV9lChoBkdAcToo6CDmKmgHTYwBaAhHQJjLJCx/ust1fZQoaAZHQGY0HAZbY9RoB03oA2gIR0CYzkjM3ZPEdX2UKGgGR0BoXnNke6qbaAdN6ANoCEdAmOSUiY9gW3V9lChoBkdAYAywj+rEL2gHTegDaAhHQJjnM/A0sOJ1fZQoaAZHQGPzqvmozepoB03oA2gIR0CY6nk3juKGdX2UKGgGR0Bjj6BZpztDaAdN6ANoCEdAmO58YyfthXV9lChoBkdAYvdl18stkGgHTegDaAhHQJjxyOZLIxR1fZQoaAZHQGNMdGRV6u5oB03oA2gIR0CZBhJTl1bJdX2UKGgGR0BihA9X9zfaaAdN6ANoCEdAmQb5b6guiHV9lChoBkdAYQjCTEBKc2gHTegDaAhHQJkHmLWI42l1fZQoaAZHQGPAU9IPK+1oB03oA2gIR0CZB/51vES/dX2UKGgGR0Bius7dSEUTaAdN6ANoCEdAmQrsFdLQHHV9lChoBkdAYn3UnXumamgHTegDaAhHQJkL16QeV9p1fZQoaAZHQG8hORDCxeNoB01FAWgIR0CZDaGs3hn8dX2UKGgGR0BjFKXSjQAuaAdN6ANoCEdAmRB8spXp4nV9lChoBkdAXZK/ATIvJ2gHTegDaAhHQJkcP+ZPVNJ1fZQoaAZHQGREC+UQkHFoB03oA2gIR0CZJzq8UVSGdX2UKGgGR0BlVy24NI9UaAdN6ANoCEdAmSoXwsoUjHV9lChoBkdAZJi0gKWszWgHTegDaAhHQJksaK64DtB1fZQoaAZHQGRvc9GI9DBoB03oA2gIR0CZQDBczImxdX2UKGgGR0BiskX531SPaAdN6ANoCEdAmUMhY3eenXV9lChoBkdAYzad0aIeo2gHTegDaAhHQJlGb84xUNt1fZQoaAZHQGBVxwhnrY5oB03oA2gIR0CZShh8pkPMdX2UKGgGR0BleJy0a6z3aAdN6ANoCEdAmWNZHmRvFXV9lChoBkdAZ/9jm0VrRGgHTegDaAhHQJlkGhFmWdF1fZQoaAZHQGI5DbzshPloB03oA2gIR0CZZJbwSamXdX2UKGgGR0BgobwDvE0jaAdN6ANoCEdAmWTU+gUUPHV9lChoBkdAZpJJNj9XLmgHTegDaAhHQJlmdRQ79yd1fZQoaAZHQGL3Fk6Lfk5oB03oA2gIR0CZZwQSBbwCdX2UKGgGR0BiMIoCuEElaAdN6ANoCEdAmWf/mT1TSHV9lChoBkdARvqmALApKGgHTSMBaAhHQJloEEIPbwl1fZQoaAZHQHHZGvGIbfhoB01UAmgIR0CZaOVQQ+UydX2UKGgGR0Bekibc45tFaAdN6ANoCEdAmWmITfzjFXV9lChoBkdAUVkvalDWsmgHS/ZoCEdAmWudcjZ+QXV9lChoBkdAUvIZ0jkdWGgHS/5oCEdAmW9P8IiTuHV9lChoBkdAY0j0ulGgBmgHTegDaAhHQJlwAMspXp51fZQoaAZHQGJWesYEW69oB03oA2gIR0CZeJaLGaQWdX2UKGgGR0BjyUyDZlFuaAdN6ANoCEdAmXs5Z8rqdHV9lChoBkdAcfHjLSuyNWgHTdsCaAhHQJmWrPppvgp1fZQoaAZHQGMA1lXiiqRoB03oA2gIR0CZmvwazeGgdX2UKGgGR0BhpEjzI3iraAdN6ANoCEdAmZ5XZ00WM3V9lChoBkdAcQIEORT0hGgHTUQDaAhHQJmhtLg4wRJ1fZQoaAZHQGE7m9Htnf5oB03oA2gIR0CZo/wqy4WldX2UKGgGR0BoQmzv7WNFaAdN6ANoCEdAmaS2ys0YTHV9lChoBkdAYySnYxtYS2gHTegDaAhHQJmlKD8Lrop1fZQoaAZHQGRa1FQVKwpoB03oA2gIR0CZuBUb1h9cdX2UKGgGR0A599S/CZWraAdNGwFoCEdAmbl5sXSBsnV9lChoBkdAZ3sNQTEiuGgHTegDaAhHQJm5+oLofSx1fZQoaAZHQGQk9rftQbdoB03oA2gIR0CZugsfJV81dX2UKGgGR0BhzmTV2A5JaAdN6ANoCEdAmbvlHz6JqXV9lChoBkdAUS0EzO5avGgHS/1oCEdAmbyhIJ7b+XV9lChoBkdAYcwTvAoG6mgHTegDaAhHQJm+PIikftB1fZQoaAZHQGAI2P1ct5FoB03oA2gIR0CZwgEFnqVydX2UKGgGR0BhDxL5AQg+aAdN6ANoCEdAmcLUJ4SpSHV9lChoBkdAYrnEUCaJAWgHTegDaAhHQJnO5dnkDIR1fZQoaAZHQGENn6uW8h9oB03oA2gIR0CZ0oLpRoAXdX2UKGgGR0BfP9Mbm2b5aAdN6ANoCEdAmeu8qe9SM3V9lChoBkdAYQvCLMs6JmgHTegDaAhHQJnyBUcXFcZ1fZQoaAZHQGb6hwEQoThoB03oA2gIR0CZ9FJ5E+gUdX2UKGgGR0BjV3OMVDa5aAdN6ANoCEdAmfUBe5WilHV9lChoBkdAY3NLcsUZemgHTegDaAhHQJn1cDr7fpF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}