Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,143 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
|
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
###
|
|
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- yuan-tian/chartgpt-dataset
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
pipeline_tag: text2text-generation
|
10 |
---
|
11 |
+
# Model Card for ChartGPT-Llama3
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
## Model Details
|
14 |
|
15 |
### Model Description
|
16 |
|
17 |
<!-- Provide a longer summary of what this model is. -->
|
18 |
+
This model is used to generate charts from natural language. For more information, please refer to the paper.
|
19 |
|
20 |
+
* **Model type:** Language model
|
21 |
+
* **Language(s) (NLP)**: English
|
22 |
+
* **License**: Apache 2.0
|
23 |
+
* **Finetuned from model**: [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
24 |
+
* **Research paper**: [ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language](https://ieeexplore.ieee.org/document/10443572)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
### Model Input Format
|
27 |
|
28 |
+
<details>
|
29 |
+
<summary> Click to expand </summary>
|
30 |
|
31 |
+
Model input on the Step `x`.
|
32 |
|
33 |
+
```
|
34 |
+
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
35 |
+
Your response should follow the following format:
|
36 |
+
{Step 1 prompt}
|
37 |
|
38 |
+
{Step x-1 prompt}
|
39 |
+
{Step x prompt}
|
40 |
|
41 |
+
### Instruction:
|
42 |
+
{instruction}
|
43 |
|
44 |
+
### Input:
|
45 |
+
Table Name: {table name}
|
46 |
+
Table Header: {column names}
|
47 |
+
Table Header Type: {column types}
|
48 |
+
Table Data Example:
|
49 |
+
{data row 1}
|
50 |
+
{data row 2}
|
51 |
+
Previous Answer:
|
52 |
+
{previous answer}
|
53 |
|
54 |
+
### Response:
|
55 |
+
```
|
56 |
|
57 |
+
And the model should output the answer corresponding to step `x`.
|
58 |
|
59 |
+
The step 1-6 prompts are as follows:
|
60 |
|
61 |
+
```
|
62 |
+
Step 1. Select the columns:
|
63 |
+
Step 2. Filter the data:
|
64 |
+
Step 3. Add aggregate functions:
|
65 |
+
Step 4. Choose chart type:
|
66 |
+
Step 5. Select encodings:
|
67 |
+
Step 6. Sort the data:
|
68 |
+
```
|
69 |
+
</details>
|
|
|
|
|
70 |
|
71 |
## How to Get Started with the Model
|
72 |
|
73 |
+
### Running the Model on a GPU
|
74 |
+
|
75 |
+
An example of a movie dataset with an instruction "Give me a visual representation of the faculty members by their professional status.".
|
76 |
+
The model should give the answers to all steps.
|
77 |
+
You can use the code below to test if you can run the model successfully.
|
78 |
+
|
79 |
+
<details>
|
80 |
+
<summary> Click to expand </summary>
|
81 |
+
|
82 |
+
```python
|
83 |
+
from transformers import (
|
84 |
+
AutoTokenizer,
|
85 |
+
AutoModelForCausalLM,
|
86 |
+
)
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained("yuan-tian/chartgpt-llama3")
|
88 |
+
model = AutoModelForCausalLM.from_pretrained("yuan-tian/chartgpt-llama3", device_map="auto")
|
89 |
+
input_text = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
90 |
+
Your response should follow the following format:
|
91 |
+
Step 1. Select the columns:
|
92 |
+
Step 2. Filter the data:
|
93 |
+
Step 3. Add aggregate functions:
|
94 |
+
Step 4. Choose chart type:
|
95 |
+
Step 5. Select encodings:
|
96 |
+
Step 6. Sort the data:
|
97 |
+
|
98 |
+
### Instruction:
|
99 |
+
Give me a visual representation of the faculty members by their professional status.
|
100 |
+
|
101 |
+
### Input:
|
102 |
+
Table Name: Faculty
|
103 |
+
Table Header: FacID,Lname,Fname,Rank,Sex,Phone,Room,Building
|
104 |
+
Table Header Type: quantitative,nominal,nominal,nominal,nominal,quantitative,nominal,nominal
|
105 |
+
Table Data Example:
|
106 |
+
1082,Giuliano,Mark,Instructor,M,2424,224,NEB
|
107 |
+
1121,Goodrich,Michael,Professor,M,3593,219,NEB
|
108 |
+
Previous Answer:
|
109 |
+
|
110 |
+
|
111 |
+
### Response:"""
|
112 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True).to("cuda")
|
113 |
+
outputs = model.generate(**inputs)
|
114 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens = True))
|
115 |
+
```
|
116 |
+
|
117 |
+
</details>
|
118 |
|
119 |
## Training Details
|
120 |
|
121 |
### Training Data
|
122 |
|
123 |
+
This model is Fine-tuned from [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [chartgpt-dataset](https://huggingface.co/datasets/yuan-tian/chartgpt-dataset).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
### Training Procedure
|
126 |
|
127 |
+
Plan to update the preprocessing and training procedure in the future.
|
128 |
|
129 |
+
## Citation
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
**BibTeX:**
|
133 |
|
134 |
+
```
|
135 |
+
@article{tian2024chartgpt,
|
136 |
+
title={ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language},
|
137 |
+
author={Tian, Yuan and Cui, Weiwei and Deng, Dazhen and Yi, Xinjing and Yang, Yurun and Zhang, Haidong and Wu, Yingcai},
|
138 |
+
journal={IEEE Transactions on Visualization and Computer Graphics},
|
139 |
+
year={2024},
|
140 |
+
pages={1-15},
|
141 |
+
doi={10.1109/TVCG.2024.3368621}
|
142 |
+
}
|
143 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|