yuan-tian commited on
Commit
c2c6b01
1 Parent(s): aed05c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -164
README.md CHANGED
@@ -1,199 +1,143 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - yuan-tian/chartgpt-dataset
5
+ language:
6
+ - en
7
+ metrics:
8
+ - rouge
9
+ pipeline_tag: text2text-generation
10
  ---
11
+ # Model Card for ChartGPT-Llama3
 
 
 
 
 
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
17
  <!-- Provide a longer summary of what this model is. -->
18
+ This model is used to generate charts from natural language. For more information, please refer to the paper.
19
 
20
+ * **Model type:** Language model
21
+ * **Language(s) (NLP)**: English
22
+ * **License**: Apache 2.0
23
+ * **Finetuned from model**: [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
24
+ * **Research paper**: [ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language](https://ieeexplore.ieee.org/document/10443572)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ ### Model Input Format
27
 
28
+ <details>
29
+ <summary> Click to expand </summary>
30
 
31
+ Model input on the Step `x`.
32
 
33
+ ```
34
+ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
35
+ Your response should follow the following format:
36
+ {Step 1 prompt}
37
 
38
+ {Step x-1 prompt}
39
+ {Step x prompt}
40
 
41
+ ### Instruction:
42
+ {instruction}
43
 
44
+ ### Input:
45
+ Table Name: {table name}
46
+ Table Header: {column names}
47
+ Table Header Type: {column types}
48
+ Table Data Example:
49
+ {data row 1}
50
+ {data row 2}
51
+ Previous Answer:
52
+ {previous answer}
53
 
54
+ ### Response:
55
+ ```
56
 
57
+ And the model should output the answer corresponding to step `x`.
58
 
59
+ The step 1-6 prompts are as follows:
60
 
61
+ ```
62
+ Step 1. Select the columns:
63
+ Step 2. Filter the data:
64
+ Step 3. Add aggregate functions:
65
+ Step 4. Choose chart type:
66
+ Step 5. Select encodings:
67
+ Step 6. Sort the data:
68
+ ```
69
+ </details>
 
 
70
 
71
  ## How to Get Started with the Model
72
 
73
+ ### Running the Model on a GPU
74
+
75
+ An example of a movie dataset with an instruction "Give me a visual representation of the faculty members by their professional status.".
76
+ The model should give the answers to all steps.
77
+ You can use the code below to test if you can run the model successfully.
78
+
79
+ <details>
80
+ <summary> Click to expand </summary>
81
+
82
+ ```python
83
+ from transformers import (
84
+ AutoTokenizer,
85
+ AutoModelForCausalLM,
86
+ )
87
+ tokenizer = AutoTokenizer.from_pretrained("yuan-tian/chartgpt-llama3")
88
+ model = AutoModelForCausalLM.from_pretrained("yuan-tian/chartgpt-llama3", device_map="auto")
89
+ input_text = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
90
+ Your response should follow the following format:
91
+ Step 1. Select the columns:
92
+ Step 2. Filter the data:
93
+ Step 3. Add aggregate functions:
94
+ Step 4. Choose chart type:
95
+ Step 5. Select encodings:
96
+ Step 6. Sort the data:
97
+
98
+ ### Instruction:
99
+ Give me a visual representation of the faculty members by their professional status.
100
+
101
+ ### Input:
102
+ Table Name: Faculty
103
+ Table Header: FacID,Lname,Fname,Rank,Sex,Phone,Room,Building
104
+ Table Header Type: quantitative,nominal,nominal,nominal,nominal,quantitative,nominal,nominal
105
+ Table Data Example:
106
+ 1082,Giuliano,Mark,Instructor,M,2424,224,NEB
107
+ 1121,Goodrich,Michael,Professor,M,3593,219,NEB
108
+ Previous Answer:
109
+
110
+
111
+ ### Response:"""
112
+ inputs = tokenizer(input_text, return_tensors="pt", padding=True).to("cuda")
113
+ outputs = model.generate(**inputs)
114
+ print(tokenizer.decode(outputs[0], skip_special_tokens = True))
115
+ ```
116
+
117
+ </details>
118
 
119
  ## Training Details
120
 
121
  ### Training Data
122
 
123
+ This model is Fine-tuned from [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [chartgpt-dataset](https://huggingface.co/datasets/yuan-tian/chartgpt-dataset).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
+ ### Training Procedure
126
 
127
+ Plan to update the preprocessing and training procedure in the future.
128
 
129
+ ## Citation
130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
  **BibTeX:**
133
 
134
+ ```
135
+ @article{tian2024chartgpt,
136
+ title={ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language},
137
+ author={Tian, Yuan and Cui, Weiwei and Deng, Dazhen and Yi, Xinjing and Yang, Yurun and Zhang, Haidong and Wu, Yingcai},
138
+ journal={IEEE Transactions on Visualization and Computer Graphics},
139
+ year={2024},
140
+ pages={1-15},
141
+ doi={10.1109/TVCG.2024.3368621}
142
+ }
143
+ ```