yousefg commited on
Commit
e2e250c
·
verified ·
1 Parent(s): 14e76f7

Upload PPO LunarLander-v2 trained agent

Browse files
LunarLander-PPO.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:384c3e37070ca00337a9f13dbf2a9957e43dd0ced9b882f53c502245421f5b47
3
+ size 146870
LunarLander-PPO/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
LunarLander-PPO/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b8390237eb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b8390237f40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b8390240040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b83902400d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b8390240160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b83902401f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b8390240280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b8390240310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b83902403a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b8390240430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b83902404c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b8390240550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b83902470c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 500736,
25
+ "_total_timesteps": 500000.0,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1719941881221718028,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGDexr6JyCA/wPCJvfyXg76wII27ctYLvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0014719999999999178,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFc3G1x82JmMAWyUTegDjAF0lEdAgmMoGhVU/HV9lChoBkfAQE/xWkrPMWgHTQABaAhHQIJlE7EHdGl1fZQoaAZHwE8Hgdfb9IhoB006AWgIR0CCZ560IC2ddX2UKGgGR0Bn/ebobGWEaAdNYgFoCEdAgm0Kh11W83V9lChoBkdAaV3k9U0el2gHTVEBaAhHQIJv1TDO1OV1fZQoaAZHwD128nNPgvVoB00VAWgIR0CCchXA/LTydX2UKGgGR0BoDrjin5zpaAdNsAFoCEdAgnhzefqX4XV9lChoBkdAZxny7wrlNmgHTVcBaAhHQIJ7PAO8TSN1fZQoaAZHQFprKzzErG1oB03oA2gIR0CChfqREF4cdX2UKGgGR0BnugtL+PzWaAdNrANoCEdAgo/JSiudPXV9lChoBkdAYYIMcZLqU2gHTegDaAhHQIKacv0yxiZ1fZQoaAZHQFvJekpI+W5oB03oA2gIR0CCpN++/QBxdX2UKGgGR0Bp3J4hUzbfaAdNpwFoCEdAgqg7TUiIL3V9lChoBke//L/ACW/rSmgHS8RoCEdAgqw0RWcSXnV9lChoBkdAXH13iaRZEGgHTegDaAhHQIK2eQEIPbx1fZQoaAZHQF7qu01IiC9oB03oA2gIR0CCwOBjFyaNdX2UKGgGR7/wMvqTr3TNaAdL+GgIR0CCwteSjgyedX2UKGgGR0BeKRSYPXkHaAdN6ANoCEdAgs2ZMlC1JHV9lChoBkfAOM5mRNh3JWgHS9xoCEdAgs9imdiDunV9lChoBkfARlDa0x/NJWgHS8hoCEdAgtDtn5BToHV9lChoBkdAYYvD6WPcSGgHTegDaAhHQILcqLOzIFN1fZQoaAZHQF9+3mV7hNxoB03oA2gIR0CC50jIq9XcdX2UKGgGR8A95NxVAAyVaAdNXQFoCEdAgu0YNI9TxXV9lChoBkfAPbOrU9ZA6mgHS9xoCEdAgu7ZkkKNQ3V9lChoBkdAWzgazeGfw2gHTegDaAhHQIL5k1n/T9d1fZQoaAZHQGI03sHB1tBoB03oA2gIR0CDBCDfWMCLdX2UKGgGR0BhoJaRp1zRaAdN6ANoCEdAgw5+eOGTLXV9lChoBkfAR+3Y+Sr5qWgHS7toCEdAgw/sz2vjfnV9lChoBkfASR2szVMEimgHTQYBaAhHQIMR9GLDQ7d1fZQoaAZHwDffYqXnhbZoB0vVaAhHQIMTjWI42jx1fZQoaAZHQEB2AyVObiJoB0vlaAhHQIMX2Tkhib51fZQoaAZHQFsol/YrauhoB03oA2gIR0CDIfqUNayKdX2UKGgGR8A1wUUO/cnFaAdL5mgIR0CDI7owEhaDdX2UKGgGR0Be3Judf9gnaAdN6ANoCEdAgy3Pegte2XV9lChoBkdAYwM7UXpGF2gHTegDaAhHQIM4YuIyj591fZQoaAZHwCzlHYpUgjhoB004AWgIR0CDOthjOLR8dX2UKGgGR0BdyaGcnVoYaAdN6ANoCEdAg0WNQ9A5aXV9lChoBkfAKiHVwxWT5mgHS+9oCEdAg0d3Qla8pXV9lChoBkfAM3GMju8brGgHS/xoCEdAg0lkqtozvnV9lChoBkdAXgzrt3OfNGgHTegDaAhHQINT6O1fE4x1fZQoaAZHQFeSCPp6hQFoB03oA2gIR0CDXq3azu4PdX2UKGgGR8BNL4QSSNfgaAdNHAFoCEdAg2NyfUWl/HV9lChoBkfAVoOff4yoGmgHTXsBaAhHQINmc2BJ7LN1fZQoaAZHQGuKaaTfR/poB01BAWgIR0CDaQG34Kx+dX2UKGgGR0BqQeYa5wwTaAdNRAFoCEdAg23wYLsru3V9lChoBkfATcQTbnHNo2gHTQ4BaAhHQINwGafBeol1fZQoaAZHQGD4eE7GNrFoB03oA2gIR0CDerJHRTjvdX2UKGgGR8BMQP8Q7LdOaAdNAQFoCEdAg3yhbGFSKnV9lChoBkdAY5xI0ZWJamgHTZgBaAhHQIOCTXxvvSd1fZQoaAZHQGFkKSgXdj5oB03oA2gIR0CDjTsC1Z1WdX2UKGgGR0Bjsxo/RmbtaAdN6ANoCEdAg5fAIIF/x3V9lChoBkdAZ3mU47zTW2gHTWkBaAhHQIOawJPZZjh1fZQoaAZHQFl8ipeeFtdoB03oA2gIR0CDpeX+l0o0dX2UKGgGR0Bib2CkGiYcaAdN6ANoCEdAg7B0T101ZXV9lChoBkdAY+h2i+L3sWgHTegDaAhHQIO6tBppN9J1fZQoaAZHQAQxlxwQ179oB00AAWgIR0CDvLZowmE5dX2UKGgGR8ASk0XP7el9aAdL/GgIR0CDvq9hZyMldX2UKGgGR0BZSzC+De0paAdN6ANoCEdAg8kPG6wt8XV9lChoBkfAIvfSpiqhlGgHS/poCEdAg81jhDPWx3V9lChoBkfAOhw7o0Q9R2gHTQcBaAhHQIPPWTgVGkN1fZQoaAZHQFvHXCCSRr9oB03oA2gIR0CD2dLi++M7dX2UKGgGR0BpZ+Hvc8DCaAdNXAFoCEdAg9yAlF+d9XV9lChoBkdAaHBYHPeHi2gHTVkBaAhHQIPfSfe1rqN1fZQoaAZHQGm+jh99c8loB01PAWgIR0CD5FndO6/ZdX2UKGgGR0AVVmz0HyEtaAdL8GgIR0CD5mJ53TuwdX2UKGgGR0BYqCo0hvBKaAdN6ANoCEdAg/FJNTLntHV9lChoBkdAWuoF3Y+SsGgHTegDaAhHQIP7t6ol2Nh1fZQoaAZHwEel/J/5LytoB01QAWgIR0CD/lJyyUs4dX2UKGgGR0Br1++mFajfaAdNrwFoCEdAhAPyrHU+cHV9lChoBkdAVp7J9y925mgHTegDaAhHQIQOKgIyCWh1fZQoaAZHwEe7Lr5ZbINoB0v8aAhHQIQQD+irT6V1fZQoaAZHwEYEIomXw9doB0vGaAhHQIQRkXk5p8F1fZQoaAZHQGVb7MPjGT9oB03JAWgIR0CEF5r9ETg3dX2UKGgGR0Ahfx2jfvWpaAdL/WgIR0CEGY8HObAldX2UKGgGR8A9jRFZxJd0aAdL1mgIR0CEGy3KB/ZvdX2UKGgGR8BNEgYP5HmSaAdNHQFoCEdAhB1VNYbKinV9lChoBkdAYjwIMSbpeWgHTbUBaAhHQIQjHGp++dt1fZQoaAZHwEKpN5+pfhNoB0vcaAhHQIQk4bbUPQR1fZQoaAZHQGpjkaESM99oB00XA2gIR0CELe5mRNh3dX2UKGgGR0BbR+10DEFXaAdN6ANoCEdAhDiH4wh4dXV9lChoBkfATg6mALApKGgHTRABaAhHQIQ6lUKiPAB1fZQoaAZHQGr5D+BH09RoB02qAWgIR0CEPdplBhQWdX2UKGgGR0BXgV4keIVNaAdN6ANoCEdAhEgu4oZydXV9lChoBkdAagoQCjk+5mgHTV0BaAhHQIRNSDsdDIB1fZQoaAZHwCrmmHgxagVoB0vwaAhHQIRPJuGbkOt1fZQoaAZHQGzocCYCyQhoB00mAWgIR0CEUWZTho/SdX2UKGgGR0BmpCPXCj1xaAdNZAFoCEdAhFaVwgkkbHV9lChoBkfATY4ymALApWgHTVgBaAhHQIRZTOHFglZ1fZQoaAZHwFAf/gR9PUNoB0vkaAhHQIRbB13dKul1fZQoaAZHwDptlnRLK3doB0vqaAhHQIRczFyaNMp1fZQoaAZHQGEhn2AXl8xoB03oA2gIR0CEZ16mfoRqdX2UKGgGR0Bc1EGJN0vHaAdN6ANoCEdAhHGu4XoC+3V9lChoBkfASRUxwhnrZGgHTVYBaAhHQIR3NUyYXwd1fZQoaAZHQGJnZfdAPd5oB03oA2gIR0CEgXkZJkGzdX2UKGgGR0BoU0OTaCcxaAdN0wFoCEdAhIUKXOW0JHV9lChoBkdAaYlL/0dzXGgHTWkBaAhHQISH0z/IbOx1fZQoaAZHQGHIebVjI7xoB03oA2gIR0CEklAood+5dX2UKGgGR0BqyrI/7iyZaAdNTAFoCEdAhJdKzZ6D5HV9lChoBkfAUe0UypJf6WgHTdUBaAhHQISazORkmQd1fZQoaAZHwE1cfQrtmcxoB0vjaAhHQISciJ9Aood1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 1956,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.985,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
LunarLander-PPO/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d9921bef8a0808e91581751fd830d2726c591c3612af501f4b83a057442b996
3
+ size 87978
LunarLander-PPO/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0020d1f6b4f4e357c8a9214f9b93f5cd0a1f0704c763d43dafe43c7e33f1705
3
+ size 43634
LunarLander-PPO/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
LunarLander-PPO/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023
2
+ - Python: 3.10.13
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.2+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.26.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 159.81 +/- 108.68
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b8390237eb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b8390237f40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b8390240040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b83902400d0>", "_build": "<function ActorCriticPolicy._build at 0x7b8390240160>", "forward": "<function ActorCriticPolicy.forward at 0x7b83902401f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b8390240280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b8390240310>", "_predict": "<function ActorCriticPolicy._predict at 0x7b83902403a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b8390240430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b83902404c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b8390240550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b83902470c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 500736, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719941881221718028, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGDexr6JyCA/wPCJvfyXg76wII27ctYLvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFc3G1x82JmMAWyUTegDjAF0lEdAgmMoGhVU/HV9lChoBkfAQE/xWkrPMWgHTQABaAhHQIJlE7EHdGl1fZQoaAZHwE8Hgdfb9IhoB006AWgIR0CCZ560IC2ddX2UKGgGR0Bn/ebobGWEaAdNYgFoCEdAgm0Kh11W83V9lChoBkdAaV3k9U0el2gHTVEBaAhHQIJv1TDO1OV1fZQoaAZHwD128nNPgvVoB00VAWgIR0CCchXA/LTydX2UKGgGR0BoDrjin5zpaAdNsAFoCEdAgnhzefqX4XV9lChoBkdAZxny7wrlNmgHTVcBaAhHQIJ7PAO8TSN1fZQoaAZHQFprKzzErG1oB03oA2gIR0CChfqREF4cdX2UKGgGR0BnugtL+PzWaAdNrANoCEdAgo/JSiudPXV9lChoBkdAYYIMcZLqU2gHTegDaAhHQIKacv0yxiZ1fZQoaAZHQFvJekpI+W5oB03oA2gIR0CCpN++/QBxdX2UKGgGR0Bp3J4hUzbfaAdNpwFoCEdAgqg7TUiIL3V9lChoBke//L/ACW/rSmgHS8RoCEdAgqw0RWcSXnV9lChoBkdAXH13iaRZEGgHTegDaAhHQIK2eQEIPbx1fZQoaAZHQF7qu01IiC9oB03oA2gIR0CCwOBjFyaNdX2UKGgGR7/wMvqTr3TNaAdL+GgIR0CCwteSjgyedX2UKGgGR0BeKRSYPXkHaAdN6ANoCEdAgs2ZMlC1JHV9lChoBkfAOM5mRNh3JWgHS9xoCEdAgs9imdiDunV9lChoBkfARlDa0x/NJWgHS8hoCEdAgtDtn5BToHV9lChoBkdAYYvD6WPcSGgHTegDaAhHQILcqLOzIFN1fZQoaAZHQF9+3mV7hNxoB03oA2gIR0CC50jIq9XcdX2UKGgGR8A95NxVAAyVaAdNXQFoCEdAgu0YNI9TxXV9lChoBkfAPbOrU9ZA6mgHS9xoCEdAgu7ZkkKNQ3V9lChoBkdAWzgazeGfw2gHTegDaAhHQIL5k1n/T9d1fZQoaAZHQGI03sHB1tBoB03oA2gIR0CDBCDfWMCLdX2UKGgGR0BhoJaRp1zRaAdN6ANoCEdAgw5+eOGTLXV9lChoBkfAR+3Y+Sr5qWgHS7toCEdAgw/sz2vjfnV9lChoBkfASR2szVMEimgHTQYBaAhHQIMR9GLDQ7d1fZQoaAZHwDffYqXnhbZoB0vVaAhHQIMTjWI42jx1fZQoaAZHQEB2AyVObiJoB0vlaAhHQIMX2Tkhib51fZQoaAZHQFsol/YrauhoB03oA2gIR0CDIfqUNayKdX2UKGgGR8A1wUUO/cnFaAdL5mgIR0CDI7owEhaDdX2UKGgGR0Be3Judf9gnaAdN6ANoCEdAgy3Pegte2XV9lChoBkdAYwM7UXpGF2gHTegDaAhHQIM4YuIyj591fZQoaAZHwCzlHYpUgjhoB004AWgIR0CDOthjOLR8dX2UKGgGR0BdyaGcnVoYaAdN6ANoCEdAg0WNQ9A5aXV9lChoBkfAKiHVwxWT5mgHS+9oCEdAg0d3Qla8pXV9lChoBkfAM3GMju8brGgHS/xoCEdAg0lkqtozvnV9lChoBkdAXgzrt3OfNGgHTegDaAhHQINT6O1fE4x1fZQoaAZHQFeSCPp6hQFoB03oA2gIR0CDXq3azu4PdX2UKGgGR8BNL4QSSNfgaAdNHAFoCEdAg2NyfUWl/HV9lChoBkfAVoOff4yoGmgHTXsBaAhHQINmc2BJ7LN1fZQoaAZHQGuKaaTfR/poB01BAWgIR0CDaQG34Kx+dX2UKGgGR0BqQeYa5wwTaAdNRAFoCEdAg23wYLsru3V9lChoBkfATcQTbnHNo2gHTQ4BaAhHQINwGafBeol1fZQoaAZHQGD4eE7GNrFoB03oA2gIR0CDerJHRTjvdX2UKGgGR8BMQP8Q7LdOaAdNAQFoCEdAg3yhbGFSKnV9lChoBkdAY5xI0ZWJamgHTZgBaAhHQIOCTXxvvSd1fZQoaAZHQGFkKSgXdj5oB03oA2gIR0CDjTsC1Z1WdX2UKGgGR0Bjsxo/RmbtaAdN6ANoCEdAg5fAIIF/x3V9lChoBkdAZ3mU47zTW2gHTWkBaAhHQIOawJPZZjh1fZQoaAZHQFl8ipeeFtdoB03oA2gIR0CDpeX+l0o0dX2UKGgGR0Bib2CkGiYcaAdN6ANoCEdAg7B0T101ZXV9lChoBkdAY+h2i+L3sWgHTegDaAhHQIO6tBppN9J1fZQoaAZHQAQxlxwQ179oB00AAWgIR0CDvLZowmE5dX2UKGgGR8ASk0XP7el9aAdL/GgIR0CDvq9hZyMldX2UKGgGR0BZSzC+De0paAdN6ANoCEdAg8kPG6wt8XV9lChoBkfAIvfSpiqhlGgHS/poCEdAg81jhDPWx3V9lChoBkfAOhw7o0Q9R2gHTQcBaAhHQIPPWTgVGkN1fZQoaAZHQFvHXCCSRr9oB03oA2gIR0CD2dLi++M7dX2UKGgGR0BpZ+Hvc8DCaAdNXAFoCEdAg9yAlF+d9XV9lChoBkdAaHBYHPeHi2gHTVkBaAhHQIPfSfe1rqN1fZQoaAZHQGm+jh99c8loB01PAWgIR0CD5FndO6/ZdX2UKGgGR0AVVmz0HyEtaAdL8GgIR0CD5mJ53TuwdX2UKGgGR0BYqCo0hvBKaAdN6ANoCEdAg/FJNTLntHV9lChoBkdAWuoF3Y+SsGgHTegDaAhHQIP7t6ol2Nh1fZQoaAZHwEel/J/5LytoB01QAWgIR0CD/lJyyUs4dX2UKGgGR0Br1++mFajfaAdNrwFoCEdAhAPyrHU+cHV9lChoBkdAVp7J9y925mgHTegDaAhHQIQOKgIyCWh1fZQoaAZHwEe7Lr5ZbINoB0v8aAhHQIQQD+irT6V1fZQoaAZHwEYEIomXw9doB0vGaAhHQIQRkXk5p8F1fZQoaAZHQGVb7MPjGT9oB03JAWgIR0CEF5r9ETg3dX2UKGgGR0Ahfx2jfvWpaAdL/WgIR0CEGY8HObAldX2UKGgGR8A9jRFZxJd0aAdL1mgIR0CEGy3KB/ZvdX2UKGgGR8BNEgYP5HmSaAdNHQFoCEdAhB1VNYbKinV9lChoBkdAYjwIMSbpeWgHTbUBaAhHQIQjHGp++dt1fZQoaAZHwEKpN5+pfhNoB0vcaAhHQIQk4bbUPQR1fZQoaAZHQGpjkaESM99oB00XA2gIR0CELe5mRNh3dX2UKGgGR0BbR+10DEFXaAdN6ANoCEdAhDiH4wh4dXV9lChoBkfATg6mALApKGgHTRABaAhHQIQ6lUKiPAB1fZQoaAZHQGr5D+BH09RoB02qAWgIR0CEPdplBhQWdX2UKGgGR0BXgV4keIVNaAdN6ANoCEdAhEgu4oZydXV9lChoBkdAagoQCjk+5mgHTV0BaAhHQIRNSDsdDIB1fZQoaAZHwCrmmHgxagVoB0vwaAhHQIRPJuGbkOt1fZQoaAZHQGzocCYCyQhoB00mAWgIR0CEUWZTho/SdX2UKGgGR0BmpCPXCj1xaAdNZAFoCEdAhFaVwgkkbHV9lChoBkfATY4ymALApWgHTVgBaAhHQIRZTOHFglZ1fZQoaAZHwFAf/gR9PUNoB0vkaAhHQIRbB13dKul1fZQoaAZHwDptlnRLK3doB0vqaAhHQIRczFyaNMp1fZQoaAZHQGEhn2AXl8xoB03oA2gIR0CEZ16mfoRqdX2UKGgGR0Bc1EGJN0vHaAdN6ANoCEdAhHGu4XoC+3V9lChoBkfASRUxwhnrZGgHTVYBaAhHQIR3NUyYXwd1fZQoaAZHQGJnZfdAPd5oB03oA2gIR0CEgXkZJkGzdX2UKGgGR0BoU0OTaCcxaAdN0wFoCEdAhIUKXOW0JHV9lChoBkdAaYlL/0dzXGgHTWkBaAhHQISH0z/IbOx1fZQoaAZHQGHIebVjI7xoB03oA2gIR0CEklAood+5dX2UKGgGR0BqyrI/7iyZaAdNTAFoCEdAhJdKzZ6D5HV9lChoBkfAUe0UypJf6WgHTdUBaAhHQISazORkmQd1fZQoaAZHwE1cfQrtmcxoB0vjaAhHQISciJ9Aood1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.985, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.133+-x86_64-with-glibc2.31 # 1 SMP Tue Dec 19 13:14:11 UTC 2023", "Python": "3.10.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.2+cpu", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 159.8109805, "std_reward": 108.67949245118905, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-02T18:13:44.004984"}