Update README.md
Browse files
README.md
CHANGED
@@ -138,6 +138,129 @@ Explore the dataset and runtime metrics of this model in timm [model results](ht
|
|
138 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|352 |84.96|97.22|102.1 |50.2 |101.2|291 |
|
139 |
-->
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
## Citation
|
142 |
```bibtex
|
143 |
@inproceedings{zhou2024benchx,
|
|
|
138 |
|[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|352 |84.96|97.22|102.1 |50.2 |101.2|291 |
|
139 |
-->
|
140 |
|
141 |
+
# ConVIRT Checkpoint Model Card
|
142 |
+
|
143 |
+
## Model Details
|
144 |
+
- **Model Type**: ConVIRT (Contrastive Learning of Medical Visual Representations from Paired Images and Text)
|
145 |
+
- **Architecture**: Dual-encoder architecture with ResNet-50 image encoder and BERT text encoder
|
146 |
+
- **Version**: 1.0.0
|
147 |
+
- **Last Updated**: November 2024
|
148 |
+
- **License**: MIT License
|
149 |
+
- **Primary Tasks**:
|
150 |
+
- Medical image-text representation learning
|
151 |
+
- Zero-shot medical image classification
|
152 |
+
- Medical image-text retrieval
|
153 |
+
|
154 |
+
## Intended Use
|
155 |
+
- **Primary Use Cases**:
|
156 |
+
- Learning transferable medical visual representations
|
157 |
+
- Cross-modal medical image and text retrieval
|
158 |
+
- Medical image classification with limited labeled data
|
159 |
+
- Feature extraction for downstream medical imaging tasks
|
160 |
+
- **Out-of-Scope Uses**:
|
161 |
+
- Clinical decision making without human oversight
|
162 |
+
- Direct patient diagnosis
|
163 |
+
- Processing of non-medical images
|
164 |
+
|
165 |
+
## Training Data
|
166 |
+
- **Dataset**: [Dataset details should be filled in]
|
167 |
+
- Number of image-text pairs: X
|
168 |
+
- Data source(s): e.g., MIMIC-CXR, Indiana Dataset
|
169 |
+
- Types of medical images: e.g., chest X-rays, CT scans
|
170 |
+
- Text data type: Associated radiology reports
|
171 |
+
- **Data Preprocessing**:
|
172 |
+
- Image resizing to 224x224
|
173 |
+
- Text cleaning and preprocessing
|
174 |
+
- Augmentations used: random crops, color jittering, horizontal flips
|
175 |
+
|
176 |
+
## Performance and Limitations
|
177 |
+
### Performance Metrics
|
178 |
+
- **Image-Text Retrieval**:
|
179 |
+
- R@1: X%
|
180 |
+
- R@5: X%
|
181 |
+
- R@10: X%
|
182 |
+
- **Transfer Learning Performance**:
|
183 |
+
- Classification accuracy on downstream tasks: X%
|
184 |
+
- Few-shot learning performance: X%
|
185 |
+
|
186 |
+
### Limitations
|
187 |
+
- Limited to 2D medical imaging modalities
|
188 |
+
- Performance may vary across different medical specialties
|
189 |
+
- May exhibit biases present in training data
|
190 |
+
- Requires high-quality text descriptions for optimal performance
|
191 |
+
|
192 |
+
## Ethical Considerations
|
193 |
+
- **Privacy**: Model trained on de-identified medical data
|
194 |
+
- **Bias**:
|
195 |
+
- Potential demographic biases from training data
|
196 |
+
- Geographic and institutional biases
|
197 |
+
- **Safety**:
|
198 |
+
- Not intended for standalone clinical use
|
199 |
+
- Should be used as a supportive tool only
|
200 |
+
|
201 |
+
## Technical Specifications
|
202 |
+
### Requirements
|
203 |
+
- Python ≥ 3.7
|
204 |
+
- PyTorch ≥ 1.7
|
205 |
+
- CUDA compatible GPU (≥ 11GB VRAM)
|
206 |
+
- Transformers library ≥ 4.0
|
207 |
+
|
208 |
+
### Model Architecture Details
|
209 |
+
- **Image Encoder**:
|
210 |
+
- ResNet-50 backbone
|
211 |
+
- Output dimension: 512
|
212 |
+
- **Text Encoder**:
|
213 |
+
- BERT-base-uncased
|
214 |
+
- Output dimension: 512
|
215 |
+
- **Training Parameters**:
|
216 |
+
- Batch size: 256
|
217 |
+
- Learning rate: 1e-4
|
218 |
+
- Temperature parameter: 0.1
|
219 |
+
- Training epochs: X
|
220 |
+
|
221 |
+
### Input Requirements
|
222 |
+
- **Images**:
|
223 |
+
- Resolution: 224x224 pixels
|
224 |
+
- Format: RGB
|
225 |
+
- Supported types: DICOM, PNG, JPEG
|
226 |
+
- **Text**:
|
227 |
+
- Maximum length: 512 tokens
|
228 |
+
- Language: English
|
229 |
+
|
230 |
+
## Citation
|
231 |
+
```bibtex
|
232 |
+
@article{zhang2020contrastive,
|
233 |
+
title={Contrastive Learning of Medical Visual Representations from Paired Images and Text},
|
234 |
+
author={Zhang, Yuhao and Jiang, Hang and Miura, Yasuhide and Manning, Christopher D and Langlotz, Curtis P},
|
235 |
+
journal={arXiv preprint arXiv:2010.00747},
|
236 |
+
year={2020}
|
237 |
+
}
|
238 |
+
```
|
239 |
+
|
240 |
+
## Maintainers
|
241 |
+
[Your organization/team information]
|
242 |
+
|
243 |
+
## Updates and Versions
|
244 |
+
- v1.0.0 (Current):
|
245 |
+
- Initial release
|
246 |
+
- Base model trained on [dataset]
|
247 |
+
- Performance benchmarks established
|
248 |
+
|
249 |
+
## Getting Started
|
250 |
+
```python
|
251 |
+
from convirt import ConVIRT
|
252 |
+
|
253 |
+
# Load the model
|
254 |
+
model = ConVIRT.from_pretrained('path/to/checkpoint')
|
255 |
+
|
256 |
+
# Extract features
|
257 |
+
image_features = model.encode_image(image)
|
258 |
+
text_features = model.encode_text(text)
|
259 |
+
|
260 |
+
# Compute similarity
|
261 |
+
similarity = model.compute_similarity(image_features, text_features)
|
262 |
+
```
|
263 |
+
|
264 |
## Citation
|
265 |
```bibtex
|
266 |
@inproceedings{zhou2024benchx,
|