yogkul2000 commited on
Commit
a1667c0
·
1 Parent(s): f0310a3

added 7B qwen model checkpoint

Browse files
VideoSAVi-Qwen-7B-all-CLIP/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
VideoSAVi-Qwen-7B-all-CLIP/config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/scratch/ykulka10/llava-next-interleave-qwen-7b",
3
+ "architectures": [
4
+ "LlavaQwenForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "freeze_mm_mlp_adapter": false,
10
+ "freeze_mm_vision_resampler": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "image_aspect_ratio": "anyres",
14
+ "image_crop_resolution": 384,
15
+ "image_grid_pinpoints": [
16
+ [
17
+ 384,
18
+ 768
19
+ ],
20
+ [
21
+ 768,
22
+ 384
23
+ ],
24
+ [
25
+ 768,
26
+ 768
27
+ ],
28
+ [
29
+ 1152,
30
+ 384
31
+ ],
32
+ [
33
+ 384,
34
+ 1152
35
+ ]
36
+ ],
37
+ "image_split_resolution": 384,
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 11008,
40
+ "max_position_embeddings": 32768,
41
+ "max_window_layers": 28,
42
+ "mm_hidden_size": 1152,
43
+ "mm_patch_merge_type": "spatial_unpad",
44
+ "mm_projector_lr": null,
45
+ "mm_projector_type": "mlp2x_gelu",
46
+ "mm_resampler_type": "spatial_pool",
47
+ "mm_spatial_pool_mode": "average",
48
+ "mm_spatial_pool_out_channels": 1024,
49
+ "mm_spatial_pool_stride": 2,
50
+ "mm_tunable_parts": "mm_mlp_adapter,mm_language_model",
51
+ "mm_use_im_patch_token": false,
52
+ "mm_use_im_start_end": false,
53
+ "mm_vision_select_feature": "patch",
54
+ "mm_vision_select_layer": -2,
55
+ "mm_vision_tower": "google/siglip-so400m-patch14-384",
56
+ "mm_vision_tower_lr": null,
57
+ "model_type": "llava_qwen",
58
+ "num_attention_heads": 32,
59
+ "num_hidden_layers": 32,
60
+ "num_key_value_heads": 32,
61
+ "rms_norm_eps": 1e-06,
62
+ "rope_scaling": null,
63
+ "rope_theta": 1000000.0,
64
+ "sliding_window": 32768,
65
+ "tie_word_embeddings": false,
66
+ "tokenizer_model_max_length": 2048,
67
+ "tokenizer_padding_side": "right",
68
+ "torch_dtype": "bfloat16",
69
+ "transformers_version": "4.40.0.dev0",
70
+ "tune_mm_mlp_adapter": false,
71
+ "tune_mm_vision_resampler": false,
72
+ "unfreeze_mm_vision_tower": false,
73
+ "use_cache": false,
74
+ "use_mm_proj": true,
75
+ "use_sliding_window": false,
76
+ "vision_tower_pretrained": null,
77
+ "vocab_size": 151936
78
+ }
VideoSAVi-Qwen-7B-all-CLIP/generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.7,
12
+ "top_k": 20,
13
+ "top_p": 0.8,
14
+ "transformers_version": "4.40.0.dev0"
15
+ }
VideoSAVi-Qwen-7B-all-CLIP/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step150
VideoSAVi-Qwen-7B-all-CLIP/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
VideoSAVi-Qwen-7B-all-CLIP/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df108c72a308484bcdfca64aa296b82235c3fc2c6c3143f0eeae2de41f3c6edd
3
+ size 4988490704
VideoSAVi-Qwen-7B-all-CLIP/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5bdb72ab18ee283f30d45a4e560ac6d5b93bacc39301c09201602e0a1791097
3
+ size 4981244328
VideoSAVi-Qwen-7B-all-CLIP/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:835847a1b03e677f4029edc07495aa1e4f09d1263aa7a51cf0934cf920e3b2dc
3
+ size 4998695864
VideoSAVi-Qwen-7B-all-CLIP/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af19d973c7c37face9edeeffda8bbd9a0c92a26820beb67f52f7e4957ad7e756
3
+ size 1312841000
VideoSAVi-Qwen-7B-all-CLIP/model.safetensors.index.json ADDED
@@ -0,0 +1,820 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16281160768
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.image_newline": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
32
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
44
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
56
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
68
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
80
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
92
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
104
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
116
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
128
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
140
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
147
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
148
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
150
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
152
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
164
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
165
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
171
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
174
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
176
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
177
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
183
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
186
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
188
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
189
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
200
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
212
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
224
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
236
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
248
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
260
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
266
+ "model.layers.28.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
267
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
269
+ "model.layers.28.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
270
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
271
+ "model.layers.28.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
272
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.29.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
279
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.29.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
282
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.29.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
284
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
290
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
291
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
293
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
294
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
295
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
296
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.30.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
303
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.layers.30.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
306
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
307
+ "model.layers.30.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
308
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
311
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.31.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
315
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.31.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
318
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
319
+ "model.layers.31.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
320
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
322
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
323
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
324
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
325
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
326
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
327
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
329
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
330
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
331
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
332
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
333
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
334
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
335
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
336
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
337
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
338
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
339
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
340
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
341
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
342
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
343
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
344
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
345
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
346
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
347
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
348
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
350
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
351
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
354
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
355
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
356
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
358
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
359
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
361
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
362
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
363
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
365
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
366
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
367
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
368
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
369
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
370
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
372
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
373
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
374
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
375
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
377
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
378
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
379
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
380
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
382
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
383
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
384
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
385
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
386
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
387
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
389
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
390
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
391
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
392
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
393
+ "model.mm_projector.0.bias": "model-00004-of-00004.safetensors",
394
+ "model.mm_projector.0.weight": "model-00004-of-00004.safetensors",
395
+ "model.mm_projector.2.bias": "model-00004-of-00004.safetensors",
396
+ "model.mm_projector.2.weight": "model-00004-of-00004.safetensors",
397
+ "model.norm.weight": "model-00003-of-00004.safetensors",
398
+ "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00003-of-00004.safetensors",
399
+ "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors",
400
+ "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors",
401
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors",
402
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors",
403
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors",
404
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors",
405
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors",
406
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors",
407
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors",
408
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors",
409
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
410
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
411
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
412
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
413
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
414
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
415
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
416
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
417
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors",
418
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors",
419
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors",
420
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors",
421
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors",
422
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors",
423
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors",
424
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors",
425
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
426
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
427
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
428
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
429
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
430
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
431
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
432
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
433
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors",
434
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors",
435
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors",
436
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors",
437
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors",
438
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors",
439
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors",
440
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors",
441
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
442
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
443
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
444
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
445
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
446
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
447
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
448
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
449
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors",
450
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors",
451
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors",
452
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors",
453
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors",
454
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors",
455
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors",
456
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors",
457
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
458
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
459
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
460
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
461
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
462
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
463
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
464
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
465
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors",
466
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors",
467
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors",
468
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors",
469
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors",
470
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors",
471
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors",
472
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors",
473
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
474
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
475
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
476
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
477
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
478
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
479
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
480
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
481
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors",
482
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors",
483
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors",
484
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors",
485
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors",
486
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors",
487
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors",
488
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors",
489
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
490
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
491
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
492
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
493
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
494
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
495
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
496
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
497
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors",
498
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors",
499
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors",
500
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors",
501
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors",
502
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors",
503
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors",
504
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors",
505
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
506
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
507
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
508
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
509
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
510
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
511
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
512
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
513
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors",
514
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors",
515
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors",
516
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors",
517
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors",
518
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors",
519
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors",
520
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors",
521
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
522
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
523
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
524
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
525
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
526
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
527
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
528
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
529
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors",
530
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors",
531
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors",
532
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors",
533
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors",
534
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors",
535
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors",
536
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors",
537
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
538
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
539
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
540
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
541
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
542
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
543
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
544
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
545
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors",
546
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors",
547
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors",
548
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors",
549
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors",
550
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors",
551
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors",
552
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors",
553
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
554
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
555
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
556
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
557
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
558
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
559
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
560
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
561
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors",
562
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors",
563
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00004.safetensors",
564
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00004.safetensors",
565
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors",
566
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors",
567
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00004.safetensors",
568
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00004.safetensors",
569
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
570
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
571
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
572
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
573
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
574
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
575
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
576
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
577
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00004.safetensors",
578
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00004.safetensors",
579
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00004.safetensors",
580
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00004.safetensors",
581
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00004.safetensors",
582
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00004.safetensors",
583
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00004.safetensors",
584
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00004.safetensors",
585
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
586
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
587
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
588
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
589
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
590
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
591
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
592
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
593
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors",
594
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors",
595
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors",
596
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors",
597
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors",
598
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors",
599
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors",
600
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors",
601
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
602
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
603
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
604
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
605
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
606
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
607
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
608
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
609
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00004.safetensors",
610
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00004.safetensors",
611
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00004.safetensors",
612
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00004.safetensors",
613
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00004.safetensors",
614
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00004.safetensors",
615
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00004.safetensors",
616
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00004.safetensors",
617
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
618
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
619
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
620
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
621
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
622
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
623
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
624
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
625
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00004.safetensors",
626
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00004.safetensors",
627
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00004.safetensors",
628
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00004.safetensors",
629
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00004.safetensors",
630
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00004.safetensors",
631
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00004.safetensors",
632
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00004.safetensors",
633
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
634
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
635
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
636
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
637
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
638
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
639
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
640
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
641
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00004.safetensors",
642
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00004.safetensors",
643
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00004.safetensors",
644
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00004.safetensors",
645
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00004.safetensors",
646
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00004.safetensors",
647
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00004.safetensors",
648
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00004.safetensors",
649
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
650
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
651
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
652
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
653
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
654
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
655
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
656
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
657
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00004.safetensors",
658
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00004.safetensors",
659
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00004.safetensors",
660
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00004.safetensors",
661
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00004.safetensors",
662
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00004.safetensors",
663
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00004.safetensors",
664
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00004.safetensors",
665
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
666
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
667
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
668
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
669
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
670
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
671
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
672
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
673
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00003-of-00004.safetensors",
674
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00003-of-00004.safetensors",
675
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00003-of-00004.safetensors",
676
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00003-of-00004.safetensors",
677
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00003-of-00004.safetensors",
678
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00003-of-00004.safetensors",
679
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00003-of-00004.safetensors",
680
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00003-of-00004.safetensors",
681
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
682
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
683
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
684
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
685
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
686
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
687
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
688
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
689
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
690
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
691
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
692
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
693
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
694
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
695
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
696
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
697
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
698
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
699
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
700
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
701
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
702
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
703
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
704
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
705
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors",
706
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors",
707
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors",
708
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors",
709
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors",
710
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors",
711
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors",
712
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors",
713
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
714
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
715
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
716
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
717
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
718
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
719
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
720
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
721
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors",
722
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors",
723
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors",
724
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors",
725
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors",
726
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors",
727
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors",
728
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors",
729
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
730
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
731
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
732
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
733
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
734
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
735
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
736
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
737
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors",
738
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors",
739
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors",
740
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors",
741
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors",
742
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors",
743
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors",
744
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors",
745
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
746
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
747
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
748
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
749
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
750
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
751
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
752
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
753
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors",
754
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors",
755
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors",
756
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors",
757
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors",
758
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors",
759
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors",
760
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors",
761
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
762
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
763
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
764
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
765
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
766
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
767
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
768
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
769
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors",
770
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors",
771
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors",
772
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors",
773
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors",
774
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors",
775
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors",
776
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors",
777
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
778
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
779
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
780
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
781
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
782
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
783
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
784
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
785
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors",
786
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors",
787
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors",
788
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors",
789
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors",
790
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors",
791
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors",
792
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors",
793
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
794
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
795
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
796
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
797
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
798
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
799
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
800
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
801
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors",
802
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors",
803
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors",
804
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors",
805
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors",
806
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors",
807
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors",
808
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors",
809
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
810
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
811
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
812
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
813
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
814
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
815
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
816
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
817
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
818
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors"
819
+ }
820
+ }
VideoSAVi-Qwen-7B-all-CLIP/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d63731b330e0f735fe2992a8913e78081d07ee0cc42996b9adee30db79fee95d
3
+ size 15984
VideoSAVi-Qwen-7B-all-CLIP/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:015b5f15f8fe064843b4701455431376f593b118ea16b386ec0ec0142e2cbbcf
3
+ size 15984
VideoSAVi-Qwen-7B-all-CLIP/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07bbb9859c307f6c529da2ea8c74f6539fc49961386200cf5a70e0dc570fef06
3
+ size 15984
VideoSAVi-Qwen-7B-all-CLIP/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:723c45e188af3ade31c8856c59064462207d117a2305dc3205aaaf999d43a9cd
3
+ size 15984
VideoSAVi-Qwen-7B-all-CLIP/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b734507b167ad50518ddc4e1922f10d7e14835aaaf6667514967c9b7f4712784
3
+ size 15984
VideoSAVi-Qwen-7B-all-CLIP/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3c678962f778817757fece84872578ae799549ead8da5bc26db230adae0409a
3
+ size 15984
VideoSAVi-Qwen-7B-all-CLIP/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cada924bbf45d9df603cc25552969eaec3f62aa68d9876a08b71f24621fffeae
3
+ size 15984
VideoSAVi-Qwen-7B-all-CLIP/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aca0d2229c40d555559f523f0824608f2090c50c4fa537408cc110079362a469
3
+ size 15984
VideoSAVi-Qwen-7B-all-CLIP/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
VideoSAVi-Qwen-7B-all-CLIP/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
VideoSAVi-Qwen-7B-all-CLIP/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 2048,
39
+ "pad_token": "<|endoftext|>",
40
+ "padding_side": "right",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }
VideoSAVi-Qwen-7B-all-CLIP/trainer_state.json ADDED
@@ -0,0 +1,2721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.0340522133938706,
5
+ "eval_steps": 500,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 53.13322448730469,
14
+ "learning_rate": 3.7821482602118e-10,
15
+ "logps/chosen": -45.965152740478516,
16
+ "logps/rejected": -43.26817321777344,
17
+ "loss": 0.6931,
18
+ "losses/dpo": 0.6931471824645996,
19
+ "losses/sft": 0.4698270559310913,
20
+ "losses/total": 0.6931471824645996,
21
+ "ref_logps/chosen": -45.965152740478516,
22
+ "ref_logps/rejected": -43.26817321777344,
23
+ "rewards/accuracies": 0.0,
24
+ "rewards/chosen": 0.0,
25
+ "rewards/margins": 0.0,
26
+ "rewards/rejected": 0.0,
27
+ "step": 1
28
+ },
29
+ {
30
+ "epoch": 0.0,
31
+ "grad_norm": 42.47979736328125,
32
+ "learning_rate": 7.5642965204236e-10,
33
+ "logps/chosen": -40.02202606201172,
34
+ "logps/rejected": -32.612422943115234,
35
+ "loss": 0.6931,
36
+ "losses/dpo": 0.6931471824645996,
37
+ "losses/sft": 0.39600855112075806,
38
+ "losses/total": 0.6931471824645996,
39
+ "ref_logps/chosen": -40.02202606201172,
40
+ "ref_logps/rejected": -32.612422943115234,
41
+ "rewards/accuracies": 0.0,
42
+ "rewards/chosen": 0.0,
43
+ "rewards/margins": 0.0,
44
+ "rewards/rejected": 0.0,
45
+ "step": 2
46
+ },
47
+ {
48
+ "epoch": 0.0,
49
+ "grad_norm": 41.06604766845703,
50
+ "learning_rate": 1.13464447806354e-09,
51
+ "logps/chosen": -40.55537796020508,
52
+ "logps/rejected": -34.559226989746094,
53
+ "loss": 0.6953,
54
+ "losses/dpo": 0.6931471824645996,
55
+ "losses/sft": 0.42144468426704407,
56
+ "losses/total": 0.6931471824645996,
57
+ "ref_logps/chosen": -40.522464752197266,
58
+ "ref_logps/rejected": -34.568199157714844,
59
+ "rewards/accuracies": 0.0,
60
+ "rewards/chosen": -0.0032914162147790194,
61
+ "rewards/margins": -0.0041886805556714535,
62
+ "rewards/rejected": 0.0008972645155154169,
63
+ "step": 3
64
+ },
65
+ {
66
+ "epoch": 0.0,
67
+ "grad_norm": 37.634681701660156,
68
+ "learning_rate": 1.51285930408472e-09,
69
+ "logps/chosen": -30.457353591918945,
70
+ "logps/rejected": -35.24971389770508,
71
+ "loss": 0.698,
72
+ "losses/dpo": 0.6931471824645996,
73
+ "losses/sft": 0.7412044405937195,
74
+ "losses/total": 0.6931471824645996,
75
+ "ref_logps/chosen": -30.345169067382812,
76
+ "ref_logps/rejected": -35.23454284667969,
77
+ "rewards/accuracies": 0.0,
78
+ "rewards/chosen": -0.011218691244721413,
79
+ "rewards/margins": -0.009701800532639027,
80
+ "rewards/rejected": -0.0015168904792517424,
81
+ "step": 4
82
+ },
83
+ {
84
+ "epoch": 0.0,
85
+ "grad_norm": 42.97514724731445,
86
+ "learning_rate": 1.8910741301059e-09,
87
+ "logps/chosen": -37.70698547363281,
88
+ "logps/rejected": -23.77716064453125,
89
+ "loss": 0.6938,
90
+ "losses/dpo": 0.7050856947898865,
91
+ "losses/sft": 0.4762720763683319,
92
+ "losses/total": 0.7050856947898865,
93
+ "ref_logps/chosen": -37.755462646484375,
94
+ "ref_logps/rejected": -23.837926864624023,
95
+ "rewards/accuracies": 0.5,
96
+ "rewards/chosen": 0.0048479679971933365,
97
+ "rewards/margins": -0.0012286424171179533,
98
+ "rewards/rejected": 0.0060766106471419334,
99
+ "step": 5
100
+ },
101
+ {
102
+ "epoch": 0.0,
103
+ "grad_norm": 30.40886116027832,
104
+ "learning_rate": 2.26928895612708e-09,
105
+ "logps/chosen": -19.241403579711914,
106
+ "logps/rejected": -21.918075561523438,
107
+ "loss": 0.6937,
108
+ "losses/dpo": 0.6973899602890015,
109
+ "losses/sft": 0.09948720037937164,
110
+ "losses/total": 0.6973899602890015,
111
+ "ref_logps/chosen": -19.206815719604492,
112
+ "ref_logps/rejected": -21.89419174194336,
113
+ "rewards/accuracies": 0.5,
114
+ "rewards/chosen": -0.0034588337875902653,
115
+ "rewards/margins": -0.00107060675509274,
116
+ "rewards/rejected": -0.0023882267996668816,
117
+ "step": 6
118
+ },
119
+ {
120
+ "epoch": 0.0,
121
+ "grad_norm": 43.89079284667969,
122
+ "learning_rate": 2.64750378214826e-09,
123
+ "logps/chosen": -35.801856994628906,
124
+ "logps/rejected": -36.446815490722656,
125
+ "loss": 0.6898,
126
+ "losses/dpo": 0.6871867775917053,
127
+ "losses/sft": 1.0996204614639282,
128
+ "losses/total": 0.6871867775917053,
129
+ "ref_logps/chosen": -35.87968063354492,
130
+ "ref_logps/rejected": -36.45803451538086,
131
+ "rewards/accuracies": 0.75,
132
+ "rewards/chosen": 0.007782352156937122,
133
+ "rewards/margins": 0.006660759914666414,
134
+ "rewards/rejected": 0.0011215927079319954,
135
+ "step": 7
136
+ },
137
+ {
138
+ "epoch": 0.0,
139
+ "grad_norm": 46.40654754638672,
140
+ "learning_rate": 3.02571860816944e-09,
141
+ "logps/chosen": -23.76507568359375,
142
+ "logps/rejected": -49.3902473449707,
143
+ "loss": 0.6964,
144
+ "losses/dpo": 0.6929582357406616,
145
+ "losses/sft": 0.39775577187538147,
146
+ "losses/total": 0.6929582357406616,
147
+ "ref_logps/chosen": -23.763172149658203,
148
+ "ref_logps/rejected": -49.45380401611328,
149
+ "rewards/accuracies": 0.375,
150
+ "rewards/chosen": -0.000190228340215981,
151
+ "rewards/margins": -0.006545871961861849,
152
+ "rewards/rejected": 0.006355643272399902,
153
+ "step": 8
154
+ },
155
+ {
156
+ "epoch": 0.0,
157
+ "grad_norm": 41.16609191894531,
158
+ "learning_rate": 3.40393343419062e-09,
159
+ "logps/chosen": -46.34278869628906,
160
+ "logps/rejected": -39.25700378417969,
161
+ "loss": 0.6854,
162
+ "losses/dpo": 0.6931471824645996,
163
+ "losses/sft": 0.9487500190734863,
164
+ "losses/total": 0.6931471824645996,
165
+ "ref_logps/chosen": -46.34722137451172,
166
+ "ref_logps/rejected": -39.10374450683594,
167
+ "rewards/accuracies": 0.5,
168
+ "rewards/chosen": 0.00044331513345241547,
169
+ "rewards/margins": 0.015769505873322487,
170
+ "rewards/rejected": -0.015326190739870071,
171
+ "step": 9
172
+ },
173
+ {
174
+ "epoch": 0.0,
175
+ "grad_norm": 36.190269470214844,
176
+ "learning_rate": 3.7821482602118e-09,
177
+ "logps/chosen": -25.09479331970215,
178
+ "logps/rejected": -39.543060302734375,
179
+ "loss": 0.6939,
180
+ "losses/dpo": 0.6988048553466797,
181
+ "losses/sft": 1.1739815473556519,
182
+ "losses/total": 0.6988048553466797,
183
+ "ref_logps/chosen": -24.979263305664062,
184
+ "ref_logps/rejected": -39.441261291503906,
185
+ "rewards/accuracies": 0.375,
186
+ "rewards/chosen": -0.011553037911653519,
187
+ "rewards/margins": -0.0013730167411267757,
188
+ "rewards/rejected": -0.010180020704865456,
189
+ "step": 10
190
+ },
191
+ {
192
+ "epoch": 0.0,
193
+ "grad_norm": 42.968685150146484,
194
+ "learning_rate": 4.16036308623298e-09,
195
+ "logps/chosen": -45.688053131103516,
196
+ "logps/rejected": -31.156063079833984,
197
+ "loss": 0.689,
198
+ "losses/dpo": 0.6931471824645996,
199
+ "losses/sft": 1.371110439300537,
200
+ "losses/total": 0.6931471824645996,
201
+ "ref_logps/chosen": -45.754638671875,
202
+ "ref_logps/rejected": -31.138751983642578,
203
+ "rewards/accuracies": 0.625,
204
+ "rewards/chosen": 0.0066588278859853745,
205
+ "rewards/margins": 0.008389795199036598,
206
+ "rewards/rejected": -0.0017309663817286491,
207
+ "step": 11
208
+ },
209
+ {
210
+ "epoch": 0.0,
211
+ "grad_norm": 34.414268493652344,
212
+ "learning_rate": 4.53857791225416e-09,
213
+ "logps/chosen": -36.18522644042969,
214
+ "logps/rejected": -29.030437469482422,
215
+ "loss": 0.6954,
216
+ "losses/dpo": 0.6858934760093689,
217
+ "losses/sft": 0.42428943514823914,
218
+ "losses/total": 0.6858934760093689,
219
+ "ref_logps/chosen": -36.183631896972656,
220
+ "ref_logps/rejected": -29.07280731201172,
221
+ "rewards/accuracies": 0.25,
222
+ "rewards/chosen": -0.00015949038788676262,
223
+ "rewards/margins": -0.004396378993988037,
224
+ "rewards/rejected": 0.004236889071762562,
225
+ "step": 12
226
+ },
227
+ {
228
+ "epoch": 0.0,
229
+ "grad_norm": 42.252872467041016,
230
+ "learning_rate": 4.9167927382753406e-09,
231
+ "logps/chosen": -30.722270965576172,
232
+ "logps/rejected": -52.374778747558594,
233
+ "loss": 0.6921,
234
+ "losses/dpo": 0.6986141800880432,
235
+ "losses/sft": 0.7042618989944458,
236
+ "losses/total": 0.6986141800880432,
237
+ "ref_logps/chosen": -30.702848434448242,
238
+ "ref_logps/rejected": -52.333797454833984,
239
+ "rewards/accuracies": 0.5,
240
+ "rewards/chosen": -0.0019423721823841333,
241
+ "rewards/margins": 0.0021560671739280224,
242
+ "rewards/rejected": -0.004098439123481512,
243
+ "step": 13
244
+ },
245
+ {
246
+ "epoch": 0.0,
247
+ "grad_norm": 52.068031311035156,
248
+ "learning_rate": 5.29500756429652e-09,
249
+ "logps/chosen": -58.0643310546875,
250
+ "logps/rejected": -40.236019134521484,
251
+ "loss": 0.6829,
252
+ "losses/dpo": 0.7056142091751099,
253
+ "losses/sft": 0.8749198317527771,
254
+ "losses/total": 0.7056142091751099,
255
+ "ref_logps/chosen": -58.133060455322266,
256
+ "ref_logps/rejected": -40.09267807006836,
257
+ "rewards/accuracies": 0.75,
258
+ "rewards/chosen": 0.00687251053750515,
259
+ "rewards/margins": 0.021206431090831757,
260
+ "rewards/rejected": -0.014333921484649181,
261
+ "step": 14
262
+ },
263
+ {
264
+ "epoch": 0.0,
265
+ "grad_norm": 33.8675651550293,
266
+ "learning_rate": 5.6732223903177e-09,
267
+ "logps/chosen": -28.738069534301758,
268
+ "logps/rejected": -32.7332649230957,
269
+ "loss": 0.6882,
270
+ "losses/dpo": 0.6855644583702087,
271
+ "losses/sft": 0.6099794507026672,
272
+ "losses/total": 0.6855644583702087,
273
+ "ref_logps/chosen": -28.814668655395508,
274
+ "ref_logps/rejected": -32.710052490234375,
275
+ "rewards/accuracies": 0.625,
276
+ "rewards/chosen": 0.007659816648811102,
277
+ "rewards/margins": 0.009981178678572178,
278
+ "rewards/rejected": -0.0023213629610836506,
279
+ "step": 15
280
+ },
281
+ {
282
+ "epoch": 0.0,
283
+ "grad_norm": 50.59415054321289,
284
+ "learning_rate": 6.05143721633888e-09,
285
+ "logps/chosen": -63.415924072265625,
286
+ "logps/rejected": -34.18522644042969,
287
+ "loss": 0.687,
288
+ "losses/dpo": 0.6864607930183411,
289
+ "losses/sft": 0.6457326412200928,
290
+ "losses/total": 0.6864607930183411,
291
+ "ref_logps/chosen": -63.533287048339844,
292
+ "ref_logps/rejected": -34.1763801574707,
293
+ "rewards/accuracies": 0.625,
294
+ "rewards/chosen": 0.011736572720110416,
295
+ "rewards/margins": 0.01262127235531807,
296
+ "rewards/rejected": -0.0008846997516229749,
297
+ "step": 16
298
+ },
299
+ {
300
+ "epoch": 0.0,
301
+ "grad_norm": 31.88450050354004,
302
+ "learning_rate": 6.429652042360061e-09,
303
+ "logps/chosen": -19.916322708129883,
304
+ "logps/rejected": -28.502450942993164,
305
+ "loss": 0.7005,
306
+ "losses/dpo": 0.6912732720375061,
307
+ "losses/sft": 0.2310972660779953,
308
+ "losses/total": 0.6912732720375061,
309
+ "ref_logps/chosen": -19.821392059326172,
310
+ "ref_logps/rejected": -28.552419662475586,
311
+ "rewards/accuracies": 0.25,
312
+ "rewards/chosen": -0.00949319638311863,
313
+ "rewards/margins": -0.014490035362541676,
314
+ "rewards/rejected": 0.004996838979423046,
315
+ "step": 17
316
+ },
317
+ {
318
+ "epoch": 0.0,
319
+ "grad_norm": 44.439125061035156,
320
+ "learning_rate": 6.80786686838124e-09,
321
+ "logps/chosen": -21.987422943115234,
322
+ "logps/rejected": -52.99866485595703,
323
+ "loss": 0.6919,
324
+ "losses/dpo": 0.6910991072654724,
325
+ "losses/sft": 0.6097382307052612,
326
+ "losses/total": 0.6910991072654724,
327
+ "ref_logps/chosen": -22.110370635986328,
328
+ "ref_logps/rejected": -53.094139099121094,
329
+ "rewards/accuracies": 0.625,
330
+ "rewards/chosen": 0.012294775806367397,
331
+ "rewards/margins": 0.0027476726099848747,
332
+ "rewards/rejected": 0.009547103196382523,
333
+ "step": 18
334
+ },
335
+ {
336
+ "epoch": 0.0,
337
+ "grad_norm": 47.79739761352539,
338
+ "learning_rate": 7.18608169440242e-09,
339
+ "logps/chosen": -58.563255310058594,
340
+ "logps/rejected": -41.6775016784668,
341
+ "loss": 0.6919,
342
+ "losses/dpo": 0.692899763584137,
343
+ "losses/sft": 0.41986706852912903,
344
+ "losses/total": 0.692899763584137,
345
+ "ref_logps/chosen": -58.672828674316406,
346
+ "ref_logps/rejected": -41.761592864990234,
347
+ "rewards/accuracies": 0.5,
348
+ "rewards/chosen": 0.010957282967865467,
349
+ "rewards/margins": 0.0025482713244855404,
350
+ "rewards/rejected": 0.00840901117771864,
351
+ "step": 19
352
+ },
353
+ {
354
+ "epoch": 0.0,
355
+ "grad_norm": 48.81391906738281,
356
+ "learning_rate": 7.5642965204236e-09,
357
+ "logps/chosen": -43.01997375488281,
358
+ "logps/rejected": -42.654544830322266,
359
+ "loss": 0.6909,
360
+ "losses/dpo": 0.7070827484130859,
361
+ "losses/sft": 0.4298737943172455,
362
+ "losses/total": 0.7070827484130859,
363
+ "ref_logps/chosen": -43.05825424194336,
364
+ "ref_logps/rejected": -42.64590072631836,
365
+ "rewards/accuracies": 0.5,
366
+ "rewards/chosen": 0.0038282987661659718,
367
+ "rewards/margins": 0.004692500922828913,
368
+ "rewards/rejected": -0.0008642016910016537,
369
+ "step": 20
370
+ },
371
+ {
372
+ "epoch": 0.0,
373
+ "grad_norm": 45.92574691772461,
374
+ "learning_rate": 7.94251134644478e-09,
375
+ "logps/chosen": -47.82428741455078,
376
+ "logps/rejected": -28.918079376220703,
377
+ "loss": 0.6931,
378
+ "losses/dpo": 0.6990569829940796,
379
+ "losses/sft": 0.884921669960022,
380
+ "losses/total": 0.6990569829940796,
381
+ "ref_logps/chosen": -47.84720230102539,
382
+ "ref_logps/rejected": -28.938232421875,
383
+ "rewards/accuracies": 0.5,
384
+ "rewards/chosen": 0.0022917508613318205,
385
+ "rewards/margins": 0.00027650000993162394,
386
+ "rewards/rejected": 0.0020152509678155184,
387
+ "step": 21
388
+ },
389
+ {
390
+ "epoch": 0.0,
391
+ "grad_norm": 33.18178176879883,
392
+ "learning_rate": 8.32072617246596e-09,
393
+ "logps/chosen": -29.66305160522461,
394
+ "logps/rejected": -29.4906063079834,
395
+ "loss": 0.6904,
396
+ "losses/dpo": 0.6931471824645996,
397
+ "losses/sft": 0.32695040106773376,
398
+ "losses/total": 0.6931471824645996,
399
+ "ref_logps/chosen": -29.655746459960938,
400
+ "ref_logps/rejected": -29.426069259643555,
401
+ "rewards/accuracies": 0.25,
402
+ "rewards/chosen": -0.0007306460756808519,
403
+ "rewards/margins": 0.005722904112190008,
404
+ "rewards/rejected": -0.0064535499550402164,
405
+ "step": 22
406
+ },
407
+ {
408
+ "epoch": 0.01,
409
+ "grad_norm": 44.96432113647461,
410
+ "learning_rate": 8.69894099848714e-09,
411
+ "logps/chosen": -44.383628845214844,
412
+ "logps/rejected": -30.62492561340332,
413
+ "loss": 0.696,
414
+ "losses/dpo": 0.7036435008049011,
415
+ "losses/sft": 0.9137359261512756,
416
+ "losses/total": 0.7036435008049011,
417
+ "ref_logps/chosen": -44.326786041259766,
418
+ "ref_logps/rejected": -30.624820709228516,
419
+ "rewards/accuracies": 0.25,
420
+ "rewards/chosen": -0.0056844474747776985,
421
+ "rewards/margins": -0.0056739808060228825,
422
+ "rewards/rejected": -1.0466552339494228e-05,
423
+ "step": 23
424
+ },
425
+ {
426
+ "epoch": 0.01,
427
+ "grad_norm": 42.07050323486328,
428
+ "learning_rate": 9.07715582450832e-09,
429
+ "logps/chosen": -42.034481048583984,
430
+ "logps/rejected": -36.58326721191406,
431
+ "loss": 0.7022,
432
+ "losses/dpo": 0.7029128074645996,
433
+ "losses/sft": 1.0267704725265503,
434
+ "losses/total": 0.7029128074645996,
435
+ "ref_logps/chosen": -41.85973358154297,
436
+ "ref_logps/rejected": -36.588218688964844,
437
+ "rewards/accuracies": 0.125,
438
+ "rewards/chosen": -0.017474675551056862,
439
+ "rewards/margins": -0.017969846725463867,
440
+ "rewards/rejected": 0.0004951715236529708,
441
+ "step": 24
442
+ },
443
+ {
444
+ "epoch": 0.01,
445
+ "grad_norm": 40.44936752319336,
446
+ "learning_rate": 9.4553706505295e-09,
447
+ "logps/chosen": -28.277244567871094,
448
+ "logps/rejected": -38.51260757446289,
449
+ "loss": 0.6901,
450
+ "losses/dpo": 0.6949249505996704,
451
+ "losses/sft": 0.8017578721046448,
452
+ "losses/total": 0.6949249505996704,
453
+ "ref_logps/chosen": -28.28316879272461,
454
+ "ref_logps/rejected": -38.45671081542969,
455
+ "rewards/accuracies": 0.375,
456
+ "rewards/chosen": 0.0005923390854150057,
457
+ "rewards/margins": 0.0061820391565561295,
458
+ "rewards/rejected": -0.005589699372649193,
459
+ "step": 25
460
+ },
461
+ {
462
+ "epoch": 0.01,
463
+ "grad_norm": 39.54838562011719,
464
+ "learning_rate": 9.833585476550681e-09,
465
+ "logps/chosen": -39.214866638183594,
466
+ "logps/rejected": -35.28057098388672,
467
+ "loss": 0.6906,
468
+ "losses/dpo": 0.6930829286575317,
469
+ "losses/sft": 0.2879458963871002,
470
+ "losses/total": 0.6930829286575317,
471
+ "ref_logps/chosen": -39.14422607421875,
472
+ "ref_logps/rejected": -35.15850830078125,
473
+ "rewards/accuracies": 0.5,
474
+ "rewards/chosen": -0.007063663098961115,
475
+ "rewards/margins": 0.005142513196915388,
476
+ "rewards/rejected": -0.012206176295876503,
477
+ "step": 26
478
+ },
479
+ {
480
+ "epoch": 0.01,
481
+ "grad_norm": 46.594966888427734,
482
+ "learning_rate": 1.021180030257186e-08,
483
+ "logps/chosen": -52.03388595581055,
484
+ "logps/rejected": -38.81571578979492,
485
+ "loss": 0.7028,
486
+ "losses/dpo": 0.7005717158317566,
487
+ "losses/sft": 0.19097577035427094,
488
+ "losses/total": 0.7005717158317566,
489
+ "ref_logps/chosen": -51.97730255126953,
490
+ "ref_logps/rejected": -38.94976043701172,
491
+ "rewards/accuracies": 0.25,
492
+ "rewards/chosen": -0.005658918991684914,
493
+ "rewards/margins": -0.01906323991715908,
494
+ "rewards/rejected": 0.013404322788119316,
495
+ "step": 27
496
+ },
497
+ {
498
+ "epoch": 0.01,
499
+ "grad_norm": 48.950103759765625,
500
+ "learning_rate": 1.059001512859304e-08,
501
+ "logps/chosen": -46.73711395263672,
502
+ "logps/rejected": -59.71778869628906,
503
+ "loss": 0.6948,
504
+ "losses/dpo": 0.7069879174232483,
505
+ "losses/sft": 1.273395299911499,
506
+ "losses/total": 0.7069879174232483,
507
+ "ref_logps/chosen": -46.688907623291016,
508
+ "ref_logps/rejected": -59.699073791503906,
509
+ "rewards/accuracies": 0.25,
510
+ "rewards/chosen": -0.004820322617888451,
511
+ "rewards/margins": -0.002948999870568514,
512
+ "rewards/rejected": -0.0018713227473199368,
513
+ "step": 28
514
+ },
515
+ {
516
+ "epoch": 0.01,
517
+ "grad_norm": 44.046485900878906,
518
+ "learning_rate": 1.096822995461422e-08,
519
+ "logps/chosen": -43.880401611328125,
520
+ "logps/rejected": -40.68788146972656,
521
+ "loss": 0.6967,
522
+ "losses/dpo": 0.7051054239273071,
523
+ "losses/sft": 0.8562471866607666,
524
+ "losses/total": 0.7051054239273071,
525
+ "ref_logps/chosen": -43.754669189453125,
526
+ "ref_logps/rejected": -40.6314811706543,
527
+ "rewards/accuracies": 0.375,
528
+ "rewards/chosen": -0.012573599815368652,
529
+ "rewards/margins": -0.006933570373803377,
530
+ "rewards/rejected": -0.0056400299072265625,
531
+ "step": 29
532
+ },
533
+ {
534
+ "epoch": 0.01,
535
+ "grad_norm": 22.69830894470215,
536
+ "learning_rate": 1.13464447806354e-08,
537
+ "logps/chosen": -19.23567008972168,
538
+ "logps/rejected": -17.581375122070312,
539
+ "loss": 0.6965,
540
+ "losses/dpo": 0.7024092674255371,
541
+ "losses/sft": 0.8522212505340576,
542
+ "losses/total": 0.7024092674255371,
543
+ "ref_logps/chosen": -19.222492218017578,
544
+ "ref_logps/rejected": -17.634857177734375,
545
+ "rewards/accuracies": 0.375,
546
+ "rewards/chosen": -0.0013178824447095394,
547
+ "rewards/margins": -0.006665962748229504,
548
+ "rewards/rejected": 0.0053480807691812515,
549
+ "step": 30
550
+ },
551
+ {
552
+ "epoch": 0.01,
553
+ "grad_norm": 48.038639068603516,
554
+ "learning_rate": 1.172465960665658e-08,
555
+ "logps/chosen": -57.04039001464844,
556
+ "logps/rejected": -38.704063415527344,
557
+ "loss": 0.6936,
558
+ "losses/dpo": 0.6908040046691895,
559
+ "losses/sft": 0.8999913930892944,
560
+ "losses/total": 0.6908040046691895,
561
+ "ref_logps/chosen": -57.11170196533203,
562
+ "ref_logps/rejected": -38.78229522705078,
563
+ "rewards/accuracies": 0.5,
564
+ "rewards/chosen": 0.007131719961762428,
565
+ "rewards/margins": -0.0006912816315889359,
566
+ "rewards/rejected": 0.007823002524673939,
567
+ "step": 31
568
+ },
569
+ {
570
+ "epoch": 0.01,
571
+ "grad_norm": 49.33280944824219,
572
+ "learning_rate": 1.210287443267776e-08,
573
+ "logps/chosen": -52.908721923828125,
574
+ "logps/rejected": -51.61956024169922,
575
+ "loss": 0.6959,
576
+ "losses/dpo": 0.6972215175628662,
577
+ "losses/sft": 0.24405121803283691,
578
+ "losses/total": 0.6972215175628662,
579
+ "ref_logps/chosen": -52.914344787597656,
580
+ "ref_logps/rejected": -51.67469787597656,
581
+ "rewards/accuracies": 0.375,
582
+ "rewards/chosen": 0.000563180074095726,
583
+ "rewards/margins": -0.004950487520545721,
584
+ "rewards/rejected": 0.005513668991625309,
585
+ "step": 32
586
+ },
587
+ {
588
+ "epoch": 0.01,
589
+ "grad_norm": 42.91134262084961,
590
+ "learning_rate": 1.2481089258698941e-08,
591
+ "logps/chosen": -29.194244384765625,
592
+ "logps/rejected": -46.12828826904297,
593
+ "loss": 0.6912,
594
+ "losses/dpo": 0.6876184344291687,
595
+ "losses/sft": 0.43061476945877075,
596
+ "losses/total": 0.6876184344291687,
597
+ "ref_logps/chosen": -29.302093505859375,
598
+ "ref_logps/rejected": -46.194671630859375,
599
+ "rewards/accuracies": 0.625,
600
+ "rewards/chosen": 0.010784798301756382,
601
+ "rewards/margins": 0.004146045073866844,
602
+ "rewards/rejected": 0.006638753227889538,
603
+ "step": 33
604
+ },
605
+ {
606
+ "epoch": 0.01,
607
+ "grad_norm": 38.4871826171875,
608
+ "learning_rate": 1.2859304084720122e-08,
609
+ "logps/chosen": -29.756376266479492,
610
+ "logps/rejected": -22.08219337463379,
611
+ "loss": 0.6916,
612
+ "losses/dpo": 0.6908648014068604,
613
+ "losses/sft": 0.6852660179138184,
614
+ "losses/total": 0.6908648014068604,
615
+ "ref_logps/chosen": -29.772045135498047,
616
+ "ref_logps/rejected": -22.064563751220703,
617
+ "rewards/accuracies": 0.375,
618
+ "rewards/chosen": 0.0015667201951146126,
619
+ "rewards/margins": 0.0033298381604254246,
620
+ "rewards/rejected": -0.0017631174996495247,
621
+ "step": 34
622
+ },
623
+ {
624
+ "epoch": 0.01,
625
+ "grad_norm": 46.963951110839844,
626
+ "learning_rate": 1.3237518910741299e-08,
627
+ "logps/chosen": -35.22114181518555,
628
+ "logps/rejected": -48.63469314575195,
629
+ "loss": 0.7005,
630
+ "losses/dpo": 0.6885900497436523,
631
+ "losses/sft": 0.353080153465271,
632
+ "losses/total": 0.6885900497436523,
633
+ "ref_logps/chosen": -35.19417190551758,
634
+ "ref_logps/rejected": -48.75211715698242,
635
+ "rewards/accuracies": 0.375,
636
+ "rewards/chosen": -0.002697205636650324,
637
+ "rewards/margins": -0.014439558610320091,
638
+ "rewards/rejected": 0.011742353439331055,
639
+ "step": 35
640
+ },
641
+ {
642
+ "epoch": 0.01,
643
+ "grad_norm": 36.61310577392578,
644
+ "learning_rate": 1.361573373676248e-08,
645
+ "logps/chosen": -27.793731689453125,
646
+ "logps/rejected": -31.242351531982422,
647
+ "loss": 0.6951,
648
+ "losses/dpo": 0.7104878425598145,
649
+ "losses/sft": 0.9098966717720032,
650
+ "losses/total": 0.7104878425598145,
651
+ "ref_logps/chosen": -27.74094581604004,
652
+ "ref_logps/rejected": -31.22858428955078,
653
+ "rewards/accuracies": 0.375,
654
+ "rewards/chosen": -0.005278551485389471,
655
+ "rewards/margins": -0.0039020059630274773,
656
+ "rewards/rejected": -0.0013765455223619938,
657
+ "step": 36
658
+ },
659
+ {
660
+ "epoch": 0.01,
661
+ "grad_norm": 34.854759216308594,
662
+ "learning_rate": 1.399394856278366e-08,
663
+ "logps/chosen": -27.95212745666504,
664
+ "logps/rejected": -27.223896026611328,
665
+ "loss": 0.6904,
666
+ "losses/dpo": 0.6964800357818604,
667
+ "losses/sft": 0.20950362086296082,
668
+ "losses/total": 0.6964800357818604,
669
+ "ref_logps/chosen": -27.97368621826172,
670
+ "ref_logps/rejected": -27.19019889831543,
671
+ "rewards/accuracies": 0.5,
672
+ "rewards/chosen": 0.002155975205823779,
673
+ "rewards/margins": 0.00552578829228878,
674
+ "rewards/rejected": -0.0033698140177875757,
675
+ "step": 37
676
+ },
677
+ {
678
+ "epoch": 0.01,
679
+ "grad_norm": 40.405250549316406,
680
+ "learning_rate": 1.437216338880484e-08,
681
+ "logps/chosen": -37.7248649597168,
682
+ "logps/rejected": -44.841819763183594,
683
+ "loss": 0.6867,
684
+ "losses/dpo": 0.681260347366333,
685
+ "losses/sft": 1.189764380455017,
686
+ "losses/total": 0.681260347366333,
687
+ "ref_logps/chosen": -37.73345184326172,
688
+ "ref_logps/rejected": -44.71831130981445,
689
+ "rewards/accuracies": 0.5,
690
+ "rewards/chosen": 0.0008587008342146873,
691
+ "rewards/margins": 0.013209670782089233,
692
+ "rewards/rejected": -0.01235097087919712,
693
+ "step": 38
694
+ },
695
+ {
696
+ "epoch": 0.01,
697
+ "grad_norm": 49.105464935302734,
698
+ "learning_rate": 1.4750378214826021e-08,
699
+ "logps/chosen": -46.39025115966797,
700
+ "logps/rejected": -49.15430450439453,
701
+ "loss": 0.6952,
702
+ "losses/dpo": 0.6926788687705994,
703
+ "losses/sft": 1.5534383058547974,
704
+ "losses/total": 0.6926788687705994,
705
+ "ref_logps/chosen": -46.47325897216797,
706
+ "ref_logps/rejected": -49.276241302490234,
707
+ "rewards/accuracies": 0.75,
708
+ "rewards/chosen": 0.008300865069031715,
709
+ "rewards/margins": -0.0038922191597521305,
710
+ "rewards/rejected": 0.012193083763122559,
711
+ "step": 39
712
+ },
713
+ {
714
+ "epoch": 0.01,
715
+ "grad_norm": 28.91716194152832,
716
+ "learning_rate": 1.51285930408472e-08,
717
+ "logps/chosen": -29.146198272705078,
718
+ "logps/rejected": -20.899898529052734,
719
+ "loss": 0.6876,
720
+ "losses/dpo": 0.6868137717247009,
721
+ "losses/sft": 0.9044435620307922,
722
+ "losses/total": 0.6868137717247009,
723
+ "ref_logps/chosen": -29.24700164794922,
724
+ "ref_logps/rejected": -20.889738082885742,
725
+ "rewards/accuracies": 0.625,
726
+ "rewards/chosen": 0.010080337524414062,
727
+ "rewards/margins": 0.011096293106675148,
728
+ "rewards/rejected": -0.0010159553494304419,
729
+ "step": 40
730
+ },
731
+ {
732
+ "epoch": 0.01,
733
+ "grad_norm": 50.75545120239258,
734
+ "learning_rate": 1.550680786686838e-08,
735
+ "logps/chosen": -54.49714660644531,
736
+ "logps/rejected": -42.79107666015625,
737
+ "loss": 0.6764,
738
+ "losses/dpo": 0.6895805597305298,
739
+ "losses/sft": 0.8109897971153259,
740
+ "losses/total": 0.6895805597305298,
741
+ "ref_logps/chosen": -54.59727478027344,
742
+ "ref_logps/rejected": -42.551483154296875,
743
+ "rewards/accuracies": 1.0,
744
+ "rewards/chosen": 0.010012972168624401,
745
+ "rewards/margins": 0.03397263213992119,
746
+ "rewards/rejected": -0.023959660902619362,
747
+ "step": 41
748
+ },
749
+ {
750
+ "epoch": 0.01,
751
+ "grad_norm": 47.54016876220703,
752
+ "learning_rate": 1.588502269288956e-08,
753
+ "logps/chosen": -46.886924743652344,
754
+ "logps/rejected": -29.53119659423828,
755
+ "loss": 0.6922,
756
+ "losses/dpo": 0.6936006546020508,
757
+ "losses/sft": 0.5564570426940918,
758
+ "losses/total": 0.6936006546020508,
759
+ "ref_logps/chosen": -46.89942169189453,
760
+ "ref_logps/rejected": -29.524349212646484,
761
+ "rewards/accuracies": 0.375,
762
+ "rewards/chosen": 0.0012490153312683105,
763
+ "rewards/margins": 0.0019336579134687781,
764
+ "rewards/rejected": -0.0006846425822004676,
765
+ "step": 42
766
+ },
767
+ {
768
+ "epoch": 0.01,
769
+ "grad_norm": 50.0217170715332,
770
+ "learning_rate": 1.626323751891074e-08,
771
+ "logps/chosen": -29.848779678344727,
772
+ "logps/rejected": -59.39533615112305,
773
+ "loss": 0.7001,
774
+ "losses/dpo": 0.7061429619789124,
775
+ "losses/sft": 1.1746078729629517,
776
+ "losses/total": 0.7061429619789124,
777
+ "ref_logps/chosen": -29.843900680541992,
778
+ "ref_logps/rejected": -59.52110290527344,
779
+ "rewards/accuracies": 0.375,
780
+ "rewards/chosen": -0.00048793526366353035,
781
+ "rewards/margins": -0.01306464709341526,
782
+ "rewards/rejected": 0.012576711364090443,
783
+ "step": 43
784
+ },
785
+ {
786
+ "epoch": 0.01,
787
+ "grad_norm": 33.6051139831543,
788
+ "learning_rate": 1.664145234493192e-08,
789
+ "logps/chosen": -33.32111740112305,
790
+ "logps/rejected": -20.631572723388672,
791
+ "loss": 0.6905,
792
+ "losses/dpo": 0.6931471824645996,
793
+ "losses/sft": 1.1099908351898193,
794
+ "losses/total": 0.6931471824645996,
795
+ "ref_logps/chosen": -33.38194274902344,
796
+ "ref_logps/rejected": -20.636655807495117,
797
+ "rewards/accuracies": 0.5,
798
+ "rewards/chosen": 0.006082272157073021,
799
+ "rewards/margins": 0.0055738575756549835,
800
+ "rewards/rejected": 0.0005084158619865775,
801
+ "step": 44
802
+ },
803
+ {
804
+ "epoch": 0.01,
805
+ "grad_norm": 44.24886703491211,
806
+ "learning_rate": 1.70196671709531e-08,
807
+ "logps/chosen": -72.52376556396484,
808
+ "logps/rejected": -68.03264617919922,
809
+ "loss": 0.6977,
810
+ "losses/dpo": 0.7006234526634216,
811
+ "losses/sft": 0.5646258592605591,
812
+ "losses/total": 0.7006234526634216,
813
+ "ref_logps/chosen": -72.54812622070312,
814
+ "ref_logps/rejected": -68.1447982788086,
815
+ "rewards/accuracies": 0.375,
816
+ "rewards/chosen": 0.002435469999909401,
817
+ "rewards/margins": -0.008779918774962425,
818
+ "rewards/rejected": 0.011215388774871826,
819
+ "step": 45
820
+ },
821
+ {
822
+ "epoch": 0.01,
823
+ "grad_norm": 28.697980880737305,
824
+ "learning_rate": 1.739788199697428e-08,
825
+ "logps/chosen": -23.719348907470703,
826
+ "logps/rejected": -22.18777847290039,
827
+ "loss": 0.6999,
828
+ "losses/dpo": 0.6931471824645996,
829
+ "losses/sft": 0.4597294330596924,
830
+ "losses/total": 0.6931471824645996,
831
+ "ref_logps/chosen": -23.706619262695312,
832
+ "ref_logps/rejected": -22.308765411376953,
833
+ "rewards/accuracies": 0.0,
834
+ "rewards/chosen": -0.0012728453148156404,
835
+ "rewards/margins": -0.013371658511459827,
836
+ "rewards/rejected": 0.012098812498152256,
837
+ "step": 46
838
+ },
839
+ {
840
+ "epoch": 0.01,
841
+ "grad_norm": 39.397056579589844,
842
+ "learning_rate": 1.777609682299546e-08,
843
+ "logps/chosen": -30.32215118408203,
844
+ "logps/rejected": -36.397674560546875,
845
+ "loss": 0.6964,
846
+ "losses/dpo": 0.6941532492637634,
847
+ "losses/sft": 0.9367761015892029,
848
+ "losses/total": 0.6941532492637634,
849
+ "ref_logps/chosen": -30.29210090637207,
850
+ "ref_logps/rejected": -36.431209564208984,
851
+ "rewards/accuracies": 0.25,
852
+ "rewards/chosen": -0.0030048727057874203,
853
+ "rewards/margins": -0.006358248647302389,
854
+ "rewards/rejected": 0.0033533747773617506,
855
+ "step": 47
856
+ },
857
+ {
858
+ "epoch": 0.01,
859
+ "grad_norm": 39.70116424560547,
860
+ "learning_rate": 1.815431164901664e-08,
861
+ "logps/chosen": -36.93006896972656,
862
+ "logps/rejected": -40.943641662597656,
863
+ "loss": 0.6973,
864
+ "losses/dpo": 0.6931471824645996,
865
+ "losses/sft": 1.1891580820083618,
866
+ "losses/total": 0.6931471824645996,
867
+ "ref_logps/chosen": -36.934635162353516,
868
+ "ref_logps/rejected": -41.03041458129883,
869
+ "rewards/accuracies": 0.375,
870
+ "rewards/chosen": 0.00045659602619707584,
871
+ "rewards/margins": -0.00822056457400322,
872
+ "rewards/rejected": 0.008677160367369652,
873
+ "step": 48
874
+ },
875
+ {
876
+ "epoch": 0.01,
877
+ "grad_norm": 30.530561447143555,
878
+ "learning_rate": 1.853252647503782e-08,
879
+ "logps/chosen": -23.064416885375977,
880
+ "logps/rejected": -26.3908634185791,
881
+ "loss": 0.6978,
882
+ "losses/dpo": 0.6976159811019897,
883
+ "losses/sft": 0.7396925091743469,
884
+ "losses/total": 0.6976159811019897,
885
+ "ref_logps/chosen": -23.026689529418945,
886
+ "ref_logps/rejected": -26.44501495361328,
887
+ "rewards/accuracies": 0.125,
888
+ "rewards/chosen": -0.0037726524751633406,
889
+ "rewards/margins": -0.009187883697450161,
890
+ "rewards/rejected": 0.005415231455117464,
891
+ "step": 49
892
+ },
893
+ {
894
+ "epoch": 0.01,
895
+ "grad_norm": 43.97072982788086,
896
+ "learning_rate": 1.8910741301059e-08,
897
+ "logps/chosen": -41.17816162109375,
898
+ "logps/rejected": -53.586917877197266,
899
+ "loss": 0.6952,
900
+ "losses/dpo": 0.7102349400520325,
901
+ "losses/sft": 0.7952568531036377,
902
+ "losses/total": 0.7102349400520325,
903
+ "ref_logps/chosen": -41.27253723144531,
904
+ "ref_logps/rejected": -53.72220230102539,
905
+ "rewards/accuracies": 0.625,
906
+ "rewards/chosen": 0.00943751260638237,
907
+ "rewards/margins": -0.004090785980224609,
908
+ "rewards/rejected": 0.013528299517929554,
909
+ "step": 50
910
+ },
911
+ {
912
+ "epoch": 0.01,
913
+ "grad_norm": 45.2219123840332,
914
+ "learning_rate": 1.9288956127080182e-08,
915
+ "logps/chosen": -30.593463897705078,
916
+ "logps/rejected": -29.29912567138672,
917
+ "loss": 0.7039,
918
+ "losses/dpo": 0.6956669688224792,
919
+ "losses/sft": 0.34454602003097534,
920
+ "losses/total": 0.6956669688224792,
921
+ "ref_logps/chosen": -30.442913055419922,
922
+ "ref_logps/rejected": -29.360437393188477,
923
+ "rewards/accuracies": 0.125,
924
+ "rewards/chosen": -0.015054965391755104,
925
+ "rewards/margins": -0.021185901015996933,
926
+ "rewards/rejected": 0.00613093376159668,
927
+ "step": 51
928
+ },
929
+ {
930
+ "epoch": 0.01,
931
+ "grad_norm": 43.098976135253906,
932
+ "learning_rate": 1.9667170953101362e-08,
933
+ "logps/chosen": -45.34044647216797,
934
+ "logps/rejected": -39.2700309753418,
935
+ "loss": 0.6935,
936
+ "losses/dpo": 0.688653290271759,
937
+ "losses/sft": 0.6188009977340698,
938
+ "losses/total": 0.688653290271759,
939
+ "ref_logps/chosen": -45.37505340576172,
940
+ "ref_logps/rejected": -39.31009292602539,
941
+ "rewards/accuracies": 0.375,
942
+ "rewards/chosen": 0.0034605623222887516,
943
+ "rewards/margins": -0.0005456925136968493,
944
+ "rewards/rejected": 0.004006254021078348,
945
+ "step": 52
946
+ },
947
+ {
948
+ "epoch": 0.01,
949
+ "grad_norm": 40.16943359375,
950
+ "learning_rate": 2.0045385779122543e-08,
951
+ "logps/chosen": -31.46408462524414,
952
+ "logps/rejected": -26.625892639160156,
953
+ "loss": 0.6952,
954
+ "losses/dpo": 0.6910169720649719,
955
+ "losses/sft": 0.48614105582237244,
956
+ "losses/total": 0.6910169720649719,
957
+ "ref_logps/chosen": -31.48444938659668,
958
+ "ref_logps/rejected": -26.686222076416016,
959
+ "rewards/accuracies": 0.625,
960
+ "rewards/chosen": 0.002036535646766424,
961
+ "rewards/margins": -0.003996384330093861,
962
+ "rewards/rejected": 0.006032920442521572,
963
+ "step": 53
964
+ },
965
+ {
966
+ "epoch": 0.01,
967
+ "grad_norm": 49.609840393066406,
968
+ "learning_rate": 2.042360060514372e-08,
969
+ "logps/chosen": -43.83415985107422,
970
+ "logps/rejected": -45.29457092285156,
971
+ "loss": 0.6925,
972
+ "losses/dpo": 0.702146053314209,
973
+ "losses/sft": 0.8853281140327454,
974
+ "losses/total": 0.702146053314209,
975
+ "ref_logps/chosen": -43.87609100341797,
976
+ "ref_logps/rejected": -45.32105255126953,
977
+ "rewards/accuracies": 0.625,
978
+ "rewards/chosen": 0.004192858934402466,
979
+ "rewards/margins": 0.0015453994274139404,
980
+ "rewards/rejected": 0.002647459041327238,
981
+ "step": 54
982
+ },
983
+ {
984
+ "epoch": 0.01,
985
+ "grad_norm": 29.713237762451172,
986
+ "learning_rate": 2.08018154311649e-08,
987
+ "logps/chosen": -32.37765884399414,
988
+ "logps/rejected": -28.05956268310547,
989
+ "loss": 0.6928,
990
+ "losses/dpo": 0.6871882677078247,
991
+ "losses/sft": 0.3716886639595032,
992
+ "losses/total": 0.6871882677078247,
993
+ "ref_logps/chosen": -32.31031799316406,
994
+ "ref_logps/rejected": -27.984233856201172,
995
+ "rewards/accuracies": 0.625,
996
+ "rewards/chosen": -0.006734251976013184,
997
+ "rewards/margins": 0.0007985057309269905,
998
+ "rewards/rejected": -0.007532757706940174,
999
+ "step": 55
1000
+ },
1001
+ {
1002
+ "epoch": 0.01,
1003
+ "grad_norm": 35.79730224609375,
1004
+ "learning_rate": 2.118003025718608e-08,
1005
+ "logps/chosen": -40.47246551513672,
1006
+ "logps/rejected": -19.13518524169922,
1007
+ "loss": 0.6856,
1008
+ "losses/dpo": 0.7039137482643127,
1009
+ "losses/sft": 1.24458646774292,
1010
+ "losses/total": 0.7039137482643127,
1011
+ "ref_logps/chosen": -40.5584831237793,
1012
+ "ref_logps/rejected": -19.068458557128906,
1013
+ "rewards/accuracies": 0.625,
1014
+ "rewards/chosen": 0.008601206354796886,
1015
+ "rewards/margins": 0.015273911878466606,
1016
+ "rewards/rejected": -0.006672704126685858,
1017
+ "step": 56
1018
+ },
1019
+ {
1020
+ "epoch": 0.01,
1021
+ "grad_norm": 32.738399505615234,
1022
+ "learning_rate": 2.155824508320726e-08,
1023
+ "logps/chosen": -29.533538818359375,
1024
+ "logps/rejected": -25.8756160736084,
1025
+ "loss": 0.6997,
1026
+ "losses/dpo": 0.6963517665863037,
1027
+ "losses/sft": 0.3461652100086212,
1028
+ "losses/total": 0.6963517665863037,
1029
+ "ref_logps/chosen": -29.44887924194336,
1030
+ "ref_logps/rejected": -25.920303344726562,
1031
+ "rewards/accuracies": 0.125,
1032
+ "rewards/chosen": -0.008466106839478016,
1033
+ "rewards/margins": -0.012934833765029907,
1034
+ "rewards/rejected": 0.004468727391213179,
1035
+ "step": 57
1036
+ },
1037
+ {
1038
+ "epoch": 0.01,
1039
+ "grad_norm": 40.13890838623047,
1040
+ "learning_rate": 2.193645990922844e-08,
1041
+ "logps/chosen": -46.109703063964844,
1042
+ "logps/rejected": -19.18845558166504,
1043
+ "loss": 0.6912,
1044
+ "losses/dpo": 0.7002992630004883,
1045
+ "losses/sft": 0.526166558265686,
1046
+ "losses/total": 0.7002992630004883,
1047
+ "ref_logps/chosen": -46.097267150878906,
1048
+ "ref_logps/rejected": -19.13555145263672,
1049
+ "rewards/accuracies": 0.5,
1050
+ "rewards/chosen": -0.0012434842064976692,
1051
+ "rewards/margins": 0.004046953283250332,
1052
+ "rewards/rejected": -0.005290437024086714,
1053
+ "step": 58
1054
+ },
1055
+ {
1056
+ "epoch": 0.01,
1057
+ "grad_norm": 38.2598762512207,
1058
+ "learning_rate": 2.231467473524962e-08,
1059
+ "logps/chosen": -23.814125061035156,
1060
+ "logps/rejected": -24.001953125,
1061
+ "loss": 0.6929,
1062
+ "losses/dpo": 0.6859763264656067,
1063
+ "losses/sft": 0.252949059009552,
1064
+ "losses/total": 0.6859763264656067,
1065
+ "ref_logps/chosen": -23.771499633789062,
1066
+ "ref_logps/rejected": -23.951963424682617,
1067
+ "rewards/accuracies": 0.5,
1068
+ "rewards/chosen": -0.004262452945113182,
1069
+ "rewards/margins": 0.0007364752236753702,
1070
+ "rewards/rejected": -0.004998928401619196,
1071
+ "step": 59
1072
+ },
1073
+ {
1074
+ "epoch": 0.01,
1075
+ "grad_norm": 23.8754825592041,
1076
+ "learning_rate": 2.26928895612708e-08,
1077
+ "logps/chosen": -17.547164916992188,
1078
+ "logps/rejected": -14.98313045501709,
1079
+ "loss": 0.6923,
1080
+ "losses/dpo": 0.6888842582702637,
1081
+ "losses/sft": 1.3874595165252686,
1082
+ "losses/total": 0.6888842582702637,
1083
+ "ref_logps/chosen": -17.561710357666016,
1084
+ "ref_logps/rejected": -14.980500221252441,
1085
+ "rewards/accuracies": 0.375,
1086
+ "rewards/chosen": 0.00145473494194448,
1087
+ "rewards/margins": 0.0017177729168906808,
1088
+ "rewards/rejected": -0.0002630382077768445,
1089
+ "step": 60
1090
+ },
1091
+ {
1092
+ "epoch": 0.01,
1093
+ "grad_norm": 36.69063186645508,
1094
+ "learning_rate": 2.307110438729198e-08,
1095
+ "logps/chosen": -25.101774215698242,
1096
+ "logps/rejected": -42.1680908203125,
1097
+ "loss": 0.6993,
1098
+ "losses/dpo": 0.7086414098739624,
1099
+ "losses/sft": 0.5335144400596619,
1100
+ "losses/total": 0.7086414098739624,
1101
+ "ref_logps/chosen": -25.029869079589844,
1102
+ "ref_logps/rejected": -42.215362548828125,
1103
+ "rewards/accuracies": 0.5,
1104
+ "rewards/chosen": -0.0071905553340911865,
1105
+ "rewards/margins": -0.011917639523744583,
1106
+ "rewards/rejected": 0.004727083723992109,
1107
+ "step": 61
1108
+ },
1109
+ {
1110
+ "epoch": 0.01,
1111
+ "grad_norm": 39.590003967285156,
1112
+ "learning_rate": 2.344931921331316e-08,
1113
+ "logps/chosen": -37.42922592163086,
1114
+ "logps/rejected": -26.50375747680664,
1115
+ "loss": 0.7016,
1116
+ "losses/dpo": 0.6914690732955933,
1117
+ "losses/sft": 0.6034911870956421,
1118
+ "losses/total": 0.6914690732955933,
1119
+ "ref_logps/chosen": -37.32251739501953,
1120
+ "ref_logps/rejected": -26.564237594604492,
1121
+ "rewards/accuracies": 0.25,
1122
+ "rewards/chosen": -0.010670709423720837,
1123
+ "rewards/margins": -0.016718948259949684,
1124
+ "rewards/rejected": 0.006048237904906273,
1125
+ "step": 62
1126
+ },
1127
+ {
1128
+ "epoch": 0.01,
1129
+ "grad_norm": 48.58049392700195,
1130
+ "learning_rate": 2.382753403933434e-08,
1131
+ "logps/chosen": -39.96108627319336,
1132
+ "logps/rejected": -34.021141052246094,
1133
+ "loss": 0.6989,
1134
+ "losses/dpo": 0.688057541847229,
1135
+ "losses/sft": 0.3272539973258972,
1136
+ "losses/total": 0.688057541847229,
1137
+ "ref_logps/chosen": -39.899322509765625,
1138
+ "ref_logps/rejected": -34.07249069213867,
1139
+ "rewards/accuracies": 0.5,
1140
+ "rewards/chosen": -0.0061765252612531185,
1141
+ "rewards/margins": -0.011311227455735207,
1142
+ "rewards/rejected": 0.0051347012631595135,
1143
+ "step": 63
1144
+ },
1145
+ {
1146
+ "epoch": 0.01,
1147
+ "grad_norm": 30.101633071899414,
1148
+ "learning_rate": 2.420574886535552e-08,
1149
+ "logps/chosen": -25.143138885498047,
1150
+ "logps/rejected": -32.24797821044922,
1151
+ "loss": 0.6911,
1152
+ "losses/dpo": 0.7050281167030334,
1153
+ "losses/sft": 0.7794158458709717,
1154
+ "losses/total": 0.7050281167030334,
1155
+ "ref_logps/chosen": -25.154491424560547,
1156
+ "ref_logps/rejected": -32.21677017211914,
1157
+ "rewards/accuracies": 0.5,
1158
+ "rewards/chosen": 0.001135277678258717,
1159
+ "rewards/margins": 0.0042562964372336864,
1160
+ "rewards/rejected": -0.0031210186425596476,
1161
+ "step": 64
1162
+ },
1163
+ {
1164
+ "epoch": 0.01,
1165
+ "grad_norm": 44.64031219482422,
1166
+ "learning_rate": 2.4583963691376702e-08,
1167
+ "logps/chosen": -49.361900329589844,
1168
+ "logps/rejected": -26.884492874145508,
1169
+ "loss": 0.7003,
1170
+ "losses/dpo": 0.6936798095703125,
1171
+ "losses/sft": 0.42234453558921814,
1172
+ "losses/total": 0.6936798095703125,
1173
+ "ref_logps/chosen": -49.26100158691406,
1174
+ "ref_logps/rejected": -26.92618751525879,
1175
+ "rewards/accuracies": 0.0,
1176
+ "rewards/chosen": -0.010090004652738571,
1177
+ "rewards/margins": -0.014259660616517067,
1178
+ "rewards/rejected": 0.004169655032455921,
1179
+ "step": 65
1180
+ },
1181
+ {
1182
+ "epoch": 0.01,
1183
+ "grad_norm": 41.64508819580078,
1184
+ "learning_rate": 2.4962178517397882e-08,
1185
+ "logps/chosen": -47.77102279663086,
1186
+ "logps/rejected": -48.46343231201172,
1187
+ "loss": 0.6946,
1188
+ "losses/dpo": 0.6899067163467407,
1189
+ "losses/sft": 1.0442003011703491,
1190
+ "losses/total": 0.6899067163467407,
1191
+ "ref_logps/chosen": -47.75519943237305,
1192
+ "ref_logps/rejected": -48.47092819213867,
1193
+ "rewards/accuracies": 0.375,
1194
+ "rewards/chosen": -0.0015824679285287857,
1195
+ "rewards/margins": -0.0023321392945945263,
1196
+ "rewards/rejected": 0.0007496715988963842,
1197
+ "step": 66
1198
+ },
1199
+ {
1200
+ "epoch": 0.02,
1201
+ "grad_norm": 36.368980407714844,
1202
+ "learning_rate": 2.5340393343419063e-08,
1203
+ "logps/chosen": -28.49197769165039,
1204
+ "logps/rejected": -41.9534912109375,
1205
+ "loss": 0.6894,
1206
+ "losses/dpo": 0.6909430623054504,
1207
+ "losses/sft": 1.0093305110931396,
1208
+ "losses/total": 0.6909430623054504,
1209
+ "ref_logps/chosen": -28.488712310791016,
1210
+ "ref_logps/rejected": -41.87274932861328,
1211
+ "rewards/accuracies": 0.625,
1212
+ "rewards/chosen": -0.0003263830440118909,
1213
+ "rewards/margins": 0.00774770975112915,
1214
+ "rewards/rejected": -0.008074093610048294,
1215
+ "step": 67
1216
+ },
1217
+ {
1218
+ "epoch": 0.02,
1219
+ "grad_norm": 45.25604248046875,
1220
+ "learning_rate": 2.5718608169440243e-08,
1221
+ "logps/chosen": -57.19928741455078,
1222
+ "logps/rejected": -37.23521423339844,
1223
+ "loss": 0.6945,
1224
+ "losses/dpo": 0.7012407779693604,
1225
+ "losses/sft": 1.0595611333847046,
1226
+ "losses/total": 0.7012407779693604,
1227
+ "ref_logps/chosen": -57.22715377807617,
1228
+ "ref_logps/rejected": -37.288795471191406,
1229
+ "rewards/accuracies": 0.375,
1230
+ "rewards/chosen": 0.002786970231682062,
1231
+ "rewards/margins": -0.002571570686995983,
1232
+ "rewards/rejected": 0.005358540453016758,
1233
+ "step": 68
1234
+ },
1235
+ {
1236
+ "epoch": 0.02,
1237
+ "grad_norm": 27.695709228515625,
1238
+ "learning_rate": 2.6096822995461424e-08,
1239
+ "logps/chosen": -25.917194366455078,
1240
+ "logps/rejected": -20.409564971923828,
1241
+ "loss": 0.691,
1242
+ "losses/dpo": 0.6931471824645996,
1243
+ "losses/sft": 0.5559080839157104,
1244
+ "losses/total": 0.6931471824645996,
1245
+ "ref_logps/chosen": -25.978334426879883,
1246
+ "ref_logps/rejected": -20.42633628845215,
1247
+ "rewards/accuracies": 0.5,
1248
+ "rewards/chosen": 0.006114008836448193,
1249
+ "rewards/margins": 0.00443677045404911,
1250
+ "rewards/rejected": 0.0016772389644756913,
1251
+ "step": 69
1252
+ },
1253
+ {
1254
+ "epoch": 0.02,
1255
+ "grad_norm": 40.685455322265625,
1256
+ "learning_rate": 2.6475037821482598e-08,
1257
+ "logps/chosen": -28.94492530822754,
1258
+ "logps/rejected": -28.425073623657227,
1259
+ "loss": 0.6947,
1260
+ "losses/dpo": 0.697110652923584,
1261
+ "losses/sft": 0.3066958785057068,
1262
+ "losses/total": 0.697110652923584,
1263
+ "ref_logps/chosen": -28.83943748474121,
1264
+ "ref_logps/rejected": -28.349702835083008,
1265
+ "rewards/accuracies": 0.375,
1266
+ "rewards/chosen": -0.010548913851380348,
1267
+ "rewards/margins": -0.00301172723993659,
1268
+ "rewards/rejected": -0.007537186145782471,
1269
+ "step": 70
1270
+ },
1271
+ {
1272
+ "epoch": 0.02,
1273
+ "grad_norm": 47.70412826538086,
1274
+ "learning_rate": 2.6853252647503778e-08,
1275
+ "logps/chosen": -57.458221435546875,
1276
+ "logps/rejected": -31.11433219909668,
1277
+ "loss": 0.6903,
1278
+ "losses/dpo": 0.6971299648284912,
1279
+ "losses/sft": 1.9130865335464478,
1280
+ "losses/total": 0.6971299648284912,
1281
+ "ref_logps/chosen": -57.52789306640625,
1282
+ "ref_logps/rejected": -31.124435424804688,
1283
+ "rewards/accuracies": 0.375,
1284
+ "rewards/chosen": 0.006967080757021904,
1285
+ "rewards/margins": 0.005956435110419989,
1286
+ "rewards/rejected": 0.0010106442496180534,
1287
+ "step": 71
1288
+ },
1289
+ {
1290
+ "epoch": 0.02,
1291
+ "grad_norm": 38.20296859741211,
1292
+ "learning_rate": 2.723146747352496e-08,
1293
+ "logps/chosen": -48.005828857421875,
1294
+ "logps/rejected": -41.52708435058594,
1295
+ "loss": 0.6958,
1296
+ "losses/dpo": 0.6851578950881958,
1297
+ "losses/sft": 0.9613469243049622,
1298
+ "losses/total": 0.6851578950881958,
1299
+ "ref_logps/chosen": -47.931182861328125,
1300
+ "ref_logps/rejected": -41.50524139404297,
1301
+ "rewards/accuracies": 0.375,
1302
+ "rewards/chosen": -0.007464814465492964,
1303
+ "rewards/margins": -0.005280792713165283,
1304
+ "rewards/rejected": -0.0021840212866663933,
1305
+ "step": 72
1306
+ },
1307
+ {
1308
+ "epoch": 0.02,
1309
+ "grad_norm": 41.06236267089844,
1310
+ "learning_rate": 2.760968229954614e-08,
1311
+ "logps/chosen": -40.61887741088867,
1312
+ "logps/rejected": -51.89995193481445,
1313
+ "loss": 0.6866,
1314
+ "losses/dpo": 0.6931471824645996,
1315
+ "losses/sft": 0.6842697858810425,
1316
+ "losses/total": 0.6931471824645996,
1317
+ "ref_logps/chosen": -40.7034912109375,
1318
+ "ref_logps/rejected": -51.85079574584961,
1319
+ "rewards/accuracies": 0.625,
1320
+ "rewards/chosen": 0.008461451157927513,
1321
+ "rewards/margins": 0.0133773572742939,
1322
+ "rewards/rejected": -0.004915904253721237,
1323
+ "step": 73
1324
+ },
1325
+ {
1326
+ "epoch": 0.02,
1327
+ "grad_norm": 36.2785530090332,
1328
+ "learning_rate": 2.798789712556732e-08,
1329
+ "logps/chosen": -34.483856201171875,
1330
+ "logps/rejected": -48.59144592285156,
1331
+ "loss": 0.6861,
1332
+ "losses/dpo": 0.6931471824645996,
1333
+ "losses/sft": 0.28226807713508606,
1334
+ "losses/total": 0.6931471824645996,
1335
+ "ref_logps/chosen": -34.56922912597656,
1336
+ "ref_logps/rejected": -48.53504943847656,
1337
+ "rewards/accuracies": 0.625,
1338
+ "rewards/chosen": 0.008537418209016323,
1339
+ "rewards/margins": 0.01417688187211752,
1340
+ "rewards/rejected": -0.005639463663101196,
1341
+ "step": 74
1342
+ },
1343
+ {
1344
+ "epoch": 0.02,
1345
+ "grad_norm": 39.71546936035156,
1346
+ "learning_rate": 2.83661119515885e-08,
1347
+ "logps/chosen": -36.84790802001953,
1348
+ "logps/rejected": -31.745813369750977,
1349
+ "loss": 0.699,
1350
+ "losses/dpo": 0.7019625306129456,
1351
+ "losses/sft": 0.5089595913887024,
1352
+ "losses/total": 0.7019625306129456,
1353
+ "ref_logps/chosen": -36.72783660888672,
1354
+ "ref_logps/rejected": -31.74201011657715,
1355
+ "rewards/accuracies": 0.125,
1356
+ "rewards/chosen": -0.012007355690002441,
1357
+ "rewards/margins": -0.01162691693753004,
1358
+ "rewards/rejected": -0.0003804388688877225,
1359
+ "step": 75
1360
+ },
1361
+ {
1362
+ "epoch": 0.02,
1363
+ "grad_norm": 40.46381378173828,
1364
+ "learning_rate": 2.874432677760968e-08,
1365
+ "logps/chosen": -30.391878128051758,
1366
+ "logps/rejected": -32.681922912597656,
1367
+ "loss": 0.6902,
1368
+ "losses/dpo": 0.6931471824645996,
1369
+ "losses/sft": 0.33321213722229004,
1370
+ "losses/total": 0.6931471824645996,
1371
+ "ref_logps/chosen": -30.440570831298828,
1372
+ "ref_logps/rejected": -32.669700622558594,
1373
+ "rewards/accuracies": 0.5,
1374
+ "rewards/chosen": 0.004869234748184681,
1375
+ "rewards/margins": 0.00609170226380229,
1376
+ "rewards/rejected": -0.001222467515617609,
1377
+ "step": 76
1378
+ },
1379
+ {
1380
+ "epoch": 0.02,
1381
+ "grad_norm": 35.94179916381836,
1382
+ "learning_rate": 2.912254160363086e-08,
1383
+ "logps/chosen": -31.62662124633789,
1384
+ "logps/rejected": -18.103084564208984,
1385
+ "loss": 0.6932,
1386
+ "losses/dpo": 0.6998027563095093,
1387
+ "losses/sft": 0.35783714056015015,
1388
+ "losses/total": 0.6998027563095093,
1389
+ "ref_logps/chosen": -31.659603118896484,
1390
+ "ref_logps/rejected": -18.136844635009766,
1391
+ "rewards/accuracies": 0.5,
1392
+ "rewards/chosen": 0.0032977815717458725,
1393
+ "rewards/margins": -7.820117752999067e-05,
1394
+ "rewards/rejected": 0.0033759830985218287,
1395
+ "step": 77
1396
+ },
1397
+ {
1398
+ "epoch": 0.02,
1399
+ "grad_norm": 40.7310791015625,
1400
+ "learning_rate": 2.9500756429652042e-08,
1401
+ "logps/chosen": -38.77708435058594,
1402
+ "logps/rejected": -42.00521469116211,
1403
+ "loss": 0.6934,
1404
+ "losses/dpo": 0.694230854511261,
1405
+ "losses/sft": 1.1035815477371216,
1406
+ "losses/total": 0.694230854511261,
1407
+ "ref_logps/chosen": -38.83358383178711,
1408
+ "ref_logps/rejected": -42.06493377685547,
1409
+ "rewards/accuracies": 0.375,
1410
+ "rewards/chosen": 0.005649971775710583,
1411
+ "rewards/margins": -0.00032196100801229477,
1412
+ "rewards/rejected": 0.0059719327837228775,
1413
+ "step": 78
1414
+ },
1415
+ {
1416
+ "epoch": 0.02,
1417
+ "grad_norm": 34.13336944580078,
1418
+ "learning_rate": 2.987897125567322e-08,
1419
+ "logps/chosen": -29.524137496948242,
1420
+ "logps/rejected": -25.135303497314453,
1421
+ "loss": 0.6985,
1422
+ "losses/dpo": 0.7016960382461548,
1423
+ "losses/sft": 1.4326092004776,
1424
+ "losses/total": 0.7016960382461548,
1425
+ "ref_logps/chosen": -29.412860870361328,
1426
+ "ref_logps/rejected": -25.128196716308594,
1427
+ "rewards/accuracies": 0.25,
1428
+ "rewards/chosen": -0.011127782054245472,
1429
+ "rewards/margins": -0.010416990146040916,
1430
+ "rewards/rejected": -0.0007107912097126245,
1431
+ "step": 79
1432
+ },
1433
+ {
1434
+ "epoch": 0.02,
1435
+ "grad_norm": 33.36854934692383,
1436
+ "learning_rate": 3.02571860816944e-08,
1437
+ "logps/chosen": -54.98564529418945,
1438
+ "logps/rejected": -42.637054443359375,
1439
+ "loss": 0.6894,
1440
+ "losses/dpo": 0.6928367018699646,
1441
+ "losses/sft": 1.0636935234069824,
1442
+ "losses/total": 0.6928367018699646,
1443
+ "ref_logps/chosen": -54.917259216308594,
1444
+ "ref_logps/rejected": -42.492713928222656,
1445
+ "rewards/accuracies": 0.75,
1446
+ "rewards/chosen": -0.006838513538241386,
1447
+ "rewards/margins": 0.007595384027808905,
1448
+ "rewards/rejected": -0.014433898031711578,
1449
+ "step": 80
1450
+ },
1451
+ {
1452
+ "epoch": 0.02,
1453
+ "grad_norm": 46.175270080566406,
1454
+ "learning_rate": 3.063540090771558e-08,
1455
+ "logps/chosen": -20.512210845947266,
1456
+ "logps/rejected": -59.815433502197266,
1457
+ "loss": 0.6933,
1458
+ "losses/dpo": 0.6928080320358276,
1459
+ "losses/sft": 0.8254087567329407,
1460
+ "losses/total": 0.6928080320358276,
1461
+ "ref_logps/chosen": -20.49310874938965,
1462
+ "ref_logps/rejected": -59.79820251464844,
1463
+ "rewards/accuracies": 0.875,
1464
+ "rewards/chosen": -0.0019101622747257352,
1465
+ "rewards/margins": -0.00018673017621040344,
1466
+ "rewards/rejected": -0.0017234322149306536,
1467
+ "step": 81
1468
+ },
1469
+ {
1470
+ "epoch": 0.02,
1471
+ "grad_norm": 27.743846893310547,
1472
+ "learning_rate": 3.101361573373676e-08,
1473
+ "logps/chosen": -36.26102828979492,
1474
+ "logps/rejected": -29.011253356933594,
1475
+ "loss": 0.686,
1476
+ "losses/dpo": 0.6931471824645996,
1477
+ "losses/sft": 0.43656912446022034,
1478
+ "losses/total": 0.6931471824645996,
1479
+ "ref_logps/chosen": -36.35939407348633,
1480
+ "ref_logps/rejected": -28.96433448791504,
1481
+ "rewards/accuracies": 0.625,
1482
+ "rewards/chosen": 0.009836399927735329,
1483
+ "rewards/margins": 0.014528321102261543,
1484
+ "rewards/rejected": -0.0046919225715100765,
1485
+ "step": 82
1486
+ },
1487
+ {
1488
+ "epoch": 0.02,
1489
+ "grad_norm": 40.736968994140625,
1490
+ "learning_rate": 3.1391830559757944e-08,
1491
+ "logps/chosen": -34.923274993896484,
1492
+ "logps/rejected": -27.28143310546875,
1493
+ "loss": 0.6902,
1494
+ "losses/dpo": 0.692177414894104,
1495
+ "losses/sft": 0.6479670405387878,
1496
+ "losses/total": 0.692177414894104,
1497
+ "ref_logps/chosen": -34.980430603027344,
1498
+ "ref_logps/rejected": -27.278949737548828,
1499
+ "rewards/accuracies": 0.625,
1500
+ "rewards/chosen": 0.005715560168027878,
1501
+ "rewards/margins": 0.0059640295803546906,
1502
+ "rewards/rejected": -0.0002484679571352899,
1503
+ "step": 83
1504
+ },
1505
+ {
1506
+ "epoch": 0.02,
1507
+ "grad_norm": 56.229461669921875,
1508
+ "learning_rate": 3.177004538577912e-08,
1509
+ "logps/chosen": -75.5541763305664,
1510
+ "logps/rejected": -44.489219665527344,
1511
+ "loss": 0.6972,
1512
+ "losses/dpo": 0.6931471824645996,
1513
+ "losses/sft": 0.37301287055015564,
1514
+ "losses/total": 0.6931471824645996,
1515
+ "ref_logps/chosen": -75.5169906616211,
1516
+ "ref_logps/rejected": -44.53234100341797,
1517
+ "rewards/accuracies": 0.375,
1518
+ "rewards/chosen": -0.003718042280524969,
1519
+ "rewards/margins": -0.008030176162719727,
1520
+ "rewards/rejected": 0.004312134347856045,
1521
+ "step": 84
1522
+ },
1523
+ {
1524
+ "epoch": 0.02,
1525
+ "grad_norm": 52.807533264160156,
1526
+ "learning_rate": 3.2148260211800305e-08,
1527
+ "logps/chosen": -43.525230407714844,
1528
+ "logps/rejected": -53.981651306152344,
1529
+ "loss": 0.6941,
1530
+ "losses/dpo": 0.6933290362358093,
1531
+ "losses/sft": 0.3423389196395874,
1532
+ "losses/total": 0.6933290362358093,
1533
+ "ref_logps/chosen": -43.519981384277344,
1534
+ "ref_logps/rejected": -53.99076843261719,
1535
+ "rewards/accuracies": 0.25,
1536
+ "rewards/chosen": -0.0005246158689260483,
1537
+ "rewards/margins": -0.0014358097687363625,
1538
+ "rewards/rejected": 0.0009111943654716015,
1539
+ "step": 85
1540
+ },
1541
+ {
1542
+ "epoch": 0.02,
1543
+ "grad_norm": 42.125762939453125,
1544
+ "learning_rate": 3.252647503782148e-08,
1545
+ "logps/chosen": -39.07624053955078,
1546
+ "logps/rejected": -25.18871307373047,
1547
+ "loss": 0.6888,
1548
+ "losses/dpo": 0.6931471824645996,
1549
+ "losses/sft": 0.278859406709671,
1550
+ "losses/total": 0.6931471824645996,
1551
+ "ref_logps/chosen": -39.1097412109375,
1552
+ "ref_logps/rejected": -25.13461685180664,
1553
+ "rewards/accuracies": 0.625,
1554
+ "rewards/chosen": 0.003349810838699341,
1555
+ "rewards/margins": 0.008759424090385437,
1556
+ "rewards/rejected": -0.0054096137173473835,
1557
+ "step": 86
1558
+ },
1559
+ {
1560
+ "epoch": 0.02,
1561
+ "grad_norm": 55.95197296142578,
1562
+ "learning_rate": 3.2904689863842666e-08,
1563
+ "logps/chosen": -77.34832763671875,
1564
+ "logps/rejected": -34.583526611328125,
1565
+ "loss": 0.6954,
1566
+ "losses/dpo": 0.7006169557571411,
1567
+ "losses/sft": 0.2824787497520447,
1568
+ "losses/total": 0.7006169557571411,
1569
+ "ref_logps/chosen": -77.23515319824219,
1570
+ "ref_logps/rejected": -34.51284408569336,
1571
+ "rewards/accuracies": 0.5,
1572
+ "rewards/chosen": -0.011317819356918335,
1573
+ "rewards/margins": -0.004249686375260353,
1574
+ "rewards/rejected": -0.007068133447319269,
1575
+ "step": 87
1576
+ },
1577
+ {
1578
+ "epoch": 0.02,
1579
+ "grad_norm": 52.838645935058594,
1580
+ "learning_rate": 3.328290468986384e-08,
1581
+ "logps/chosen": -52.83473205566406,
1582
+ "logps/rejected": -52.93191909790039,
1583
+ "loss": 0.6906,
1584
+ "losses/dpo": 0.6846374273300171,
1585
+ "losses/sft": 0.8209627270698547,
1586
+ "losses/total": 0.6846374273300171,
1587
+ "ref_logps/chosen": -52.82656478881836,
1588
+ "ref_logps/rejected": -52.87086486816406,
1589
+ "rewards/accuracies": 0.625,
1590
+ "rewards/chosen": -0.0008166790939867496,
1591
+ "rewards/margins": 0.0052884165197610855,
1592
+ "rewards/rejected": -0.006105095613747835,
1593
+ "step": 88
1594
+ },
1595
+ {
1596
+ "epoch": 0.02,
1597
+ "grad_norm": 23.7989559173584,
1598
+ "learning_rate": 3.366111951588503e-08,
1599
+ "logps/chosen": -18.322547912597656,
1600
+ "logps/rejected": -22.132925033569336,
1601
+ "loss": 0.688,
1602
+ "losses/dpo": 0.6949195265769958,
1603
+ "losses/sft": 0.16063320636749268,
1604
+ "losses/total": 0.6949195265769958,
1605
+ "ref_logps/chosen": -18.328706741333008,
1606
+ "ref_logps/rejected": -22.033899307250977,
1607
+ "rewards/accuracies": 0.625,
1608
+ "rewards/chosen": 0.0006158978212624788,
1609
+ "rewards/margins": 0.010518422350287437,
1610
+ "rewards/rejected": -0.009902525693178177,
1611
+ "step": 89
1612
+ },
1613
+ {
1614
+ "epoch": 0.02,
1615
+ "grad_norm": 50.99845886230469,
1616
+ "learning_rate": 3.40393343419062e-08,
1617
+ "logps/chosen": -36.93525314331055,
1618
+ "logps/rejected": -53.35734176635742,
1619
+ "loss": 0.6886,
1620
+ "losses/dpo": 0.6997432112693787,
1621
+ "losses/sft": 0.27666959166526794,
1622
+ "losses/total": 0.6997432112693787,
1623
+ "ref_logps/chosen": -36.983482360839844,
1624
+ "ref_logps/rejected": -53.31299591064453,
1625
+ "rewards/accuracies": 0.625,
1626
+ "rewards/chosen": 0.004823225550353527,
1627
+ "rewards/margins": 0.009258443489670753,
1628
+ "rewards/rejected": -0.004435217939317226,
1629
+ "step": 90
1630
+ },
1631
+ {
1632
+ "epoch": 0.02,
1633
+ "grad_norm": 36.005638122558594,
1634
+ "learning_rate": 3.441754916792738e-08,
1635
+ "logps/chosen": -36.347496032714844,
1636
+ "logps/rejected": -38.60151672363281,
1637
+ "loss": 0.6834,
1638
+ "losses/dpo": 0.7013605833053589,
1639
+ "losses/sft": 0.44756028056144714,
1640
+ "losses/total": 0.7013605833053589,
1641
+ "ref_logps/chosen": -36.41640853881836,
1642
+ "ref_logps/rejected": -38.47201919555664,
1643
+ "rewards/accuracies": 0.75,
1644
+ "rewards/chosen": 0.006891525350511074,
1645
+ "rewards/margins": 0.01984090730547905,
1646
+ "rewards/rejected": -0.01294938288629055,
1647
+ "step": 91
1648
+ },
1649
+ {
1650
+ "epoch": 0.02,
1651
+ "grad_norm": 39.57761764526367,
1652
+ "learning_rate": 3.479576399394856e-08,
1653
+ "logps/chosen": -38.53449249267578,
1654
+ "logps/rejected": -34.8283805847168,
1655
+ "loss": 0.6852,
1656
+ "losses/dpo": 0.6864519715309143,
1657
+ "losses/sft": 0.46143075823783875,
1658
+ "losses/total": 0.6864519715309143,
1659
+ "ref_logps/chosen": -38.64277648925781,
1660
+ "ref_logps/rejected": -34.775604248046875,
1661
+ "rewards/accuracies": 0.75,
1662
+ "rewards/chosen": 0.010828555561602116,
1663
+ "rewards/margins": 0.016106223687529564,
1664
+ "rewards/rejected": -0.0052776699885725975,
1665
+ "step": 92
1666
+ },
1667
+ {
1668
+ "epoch": 0.02,
1669
+ "grad_norm": 42.923465728759766,
1670
+ "learning_rate": 3.5173978819969736e-08,
1671
+ "logps/chosen": -42.63794708251953,
1672
+ "logps/rejected": -40.95237350463867,
1673
+ "loss": 0.691,
1674
+ "losses/dpo": 0.6687886714935303,
1675
+ "losses/sft": 0.9120340943336487,
1676
+ "losses/total": 0.6687886714935303,
1677
+ "ref_logps/chosen": -42.673095703125,
1678
+ "ref_logps/rejected": -40.939796447753906,
1679
+ "rewards/accuracies": 0.25,
1680
+ "rewards/chosen": 0.0035148384049534798,
1681
+ "rewards/margins": 0.004772840533405542,
1682
+ "rewards/rejected": -0.0012580035254359245,
1683
+ "step": 93
1684
+ },
1685
+ {
1686
+ "epoch": 0.02,
1687
+ "grad_norm": 35.36449432373047,
1688
+ "learning_rate": 3.555219364599092e-08,
1689
+ "logps/chosen": -30.112043380737305,
1690
+ "logps/rejected": -36.460514068603516,
1691
+ "loss": 0.6971,
1692
+ "losses/dpo": 0.6995805501937866,
1693
+ "losses/sft": 0.8373420834541321,
1694
+ "losses/total": 0.6995805501937866,
1695
+ "ref_logps/chosen": -30.007692337036133,
1696
+ "ref_logps/rejected": -36.43312454223633,
1697
+ "rewards/accuracies": 0.125,
1698
+ "rewards/chosen": -0.010435272008180618,
1699
+ "rewards/margins": -0.007696258835494518,
1700
+ "rewards/rejected": -0.0027390120085328817,
1701
+ "step": 94
1702
+ },
1703
+ {
1704
+ "epoch": 0.02,
1705
+ "grad_norm": 50.16935348510742,
1706
+ "learning_rate": 3.59304084720121e-08,
1707
+ "logps/chosen": -43.58863067626953,
1708
+ "logps/rejected": -39.95378875732422,
1709
+ "loss": 0.697,
1710
+ "losses/dpo": 0.6925528645515442,
1711
+ "losses/sft": 0.41814520955085754,
1712
+ "losses/total": 0.6925528645515442,
1713
+ "ref_logps/chosen": -43.46757888793945,
1714
+ "ref_logps/rejected": -39.90763854980469,
1715
+ "rewards/accuracies": 0.625,
1716
+ "rewards/chosen": -0.012105096131563187,
1717
+ "rewards/margins": -0.0074903108179569244,
1718
+ "rewards/rejected": -0.004614785313606262,
1719
+ "step": 95
1720
+ },
1721
+ {
1722
+ "epoch": 0.02,
1723
+ "grad_norm": 46.554473876953125,
1724
+ "learning_rate": 3.630862329803328e-08,
1725
+ "logps/chosen": -42.712406158447266,
1726
+ "logps/rejected": -38.224639892578125,
1727
+ "loss": 0.6944,
1728
+ "losses/dpo": 0.6929863691329956,
1729
+ "losses/sft": 0.6638107895851135,
1730
+ "losses/total": 0.6929863691329956,
1731
+ "ref_logps/chosen": -42.69837188720703,
1732
+ "ref_logps/rejected": -38.235469818115234,
1733
+ "rewards/accuracies": 0.5,
1734
+ "rewards/chosen": -0.001403355854563415,
1735
+ "rewards/margins": -0.002486205194145441,
1736
+ "rewards/rejected": 0.0010828491067513824,
1737
+ "step": 96
1738
+ },
1739
+ {
1740
+ "epoch": 0.02,
1741
+ "grad_norm": 50.87691879272461,
1742
+ "learning_rate": 3.668683812405446e-08,
1743
+ "logps/chosen": -47.13976287841797,
1744
+ "logps/rejected": -52.6763916015625,
1745
+ "loss": 0.6873,
1746
+ "losses/dpo": 0.7065359354019165,
1747
+ "losses/sft": 1.3687249422073364,
1748
+ "losses/total": 0.7065359354019165,
1749
+ "ref_logps/chosen": -47.076499938964844,
1750
+ "ref_logps/rejected": -52.49290466308594,
1751
+ "rewards/accuracies": 0.625,
1752
+ "rewards/chosen": -0.006325757130980492,
1753
+ "rewards/margins": 0.012022912502288818,
1754
+ "rewards/rejected": -0.01834867149591446,
1755
+ "step": 97
1756
+ },
1757
+ {
1758
+ "epoch": 0.02,
1759
+ "grad_norm": 28.458797454833984,
1760
+ "learning_rate": 3.706505295007564e-08,
1761
+ "logps/chosen": -20.34185791015625,
1762
+ "logps/rejected": -19.174640655517578,
1763
+ "loss": 0.6927,
1764
+ "losses/dpo": 0.6931471824645996,
1765
+ "losses/sft": 0.6108443140983582,
1766
+ "losses/total": 0.6931471824645996,
1767
+ "ref_logps/chosen": -20.374011993408203,
1768
+ "ref_logps/rejected": -19.19711685180664,
1769
+ "rewards/accuracies": 0.625,
1770
+ "rewards/chosen": 0.0032154680229723454,
1771
+ "rewards/margins": 0.0009677950292825699,
1772
+ "rewards/rejected": 0.0022476734593510628,
1773
+ "step": 98
1774
+ },
1775
+ {
1776
+ "epoch": 0.02,
1777
+ "grad_norm": 38.541439056396484,
1778
+ "learning_rate": 3.744326777609682e-08,
1779
+ "logps/chosen": -35.34051513671875,
1780
+ "logps/rejected": -39.98661422729492,
1781
+ "loss": 0.6994,
1782
+ "losses/dpo": 0.6870009303092957,
1783
+ "losses/sft": 1.0313451290130615,
1784
+ "losses/total": 0.6870009303092957,
1785
+ "ref_logps/chosen": -35.31980895996094,
1786
+ "ref_logps/rejected": -40.09027099609375,
1787
+ "rewards/accuracies": 0.25,
1788
+ "rewards/chosen": -0.002070808317512274,
1789
+ "rewards/margins": -0.012436461634933949,
1790
+ "rewards/rejected": 0.010365653783082962,
1791
+ "step": 99
1792
+ },
1793
+ {
1794
+ "epoch": 0.02,
1795
+ "grad_norm": 32.7611198425293,
1796
+ "learning_rate": 3.7821482602118e-08,
1797
+ "logps/chosen": -28.146602630615234,
1798
+ "logps/rejected": -32.26946258544922,
1799
+ "loss": 0.691,
1800
+ "losses/dpo": 0.6931471824645996,
1801
+ "losses/sft": 0.7257211804389954,
1802
+ "losses/total": 0.6931471824645996,
1803
+ "ref_logps/chosen": -28.161846160888672,
1804
+ "ref_logps/rejected": -32.24116134643555,
1805
+ "rewards/accuracies": 0.625,
1806
+ "rewards/chosen": 0.0015242458321154118,
1807
+ "rewards/margins": 0.004354441538453102,
1808
+ "rewards/rejected": -0.0028301957063376904,
1809
+ "step": 100
1810
+ },
1811
+ {
1812
+ "epoch": 0.02,
1813
+ "grad_norm": 48.886348724365234,
1814
+ "learning_rate": 3.819969742813918e-08,
1815
+ "logps/chosen": -24.085975646972656,
1816
+ "logps/rejected": -53.43666458129883,
1817
+ "loss": 0.6898,
1818
+ "losses/dpo": 0.6925390958786011,
1819
+ "losses/sft": 0.7717922329902649,
1820
+ "losses/total": 0.6925390958786011,
1821
+ "ref_logps/chosen": -24.032161712646484,
1822
+ "ref_logps/rejected": -53.31513977050781,
1823
+ "rewards/accuracies": 0.625,
1824
+ "rewards/chosen": -0.005381548311561346,
1825
+ "rewards/margins": 0.006771028973162174,
1826
+ "rewards/rejected": -0.012152576819062233,
1827
+ "step": 101
1828
+ },
1829
+ {
1830
+ "epoch": 0.02,
1831
+ "grad_norm": 37.729129791259766,
1832
+ "learning_rate": 3.8577912254160364e-08,
1833
+ "logps/chosen": -39.28417205810547,
1834
+ "logps/rejected": -33.66284942626953,
1835
+ "loss": 0.6891,
1836
+ "losses/dpo": 0.6890721321105957,
1837
+ "losses/sft": 0.11002220213413239,
1838
+ "losses/total": 0.6890721321105957,
1839
+ "ref_logps/chosen": -39.35163879394531,
1840
+ "ref_logps/rejected": -33.64738464355469,
1841
+ "rewards/accuracies": 0.375,
1842
+ "rewards/chosen": 0.006746518891304731,
1843
+ "rewards/margins": 0.008293158374726772,
1844
+ "rewards/rejected": -0.0015466390177607536,
1845
+ "step": 102
1846
+ },
1847
+ {
1848
+ "epoch": 0.02,
1849
+ "grad_norm": 36.61566162109375,
1850
+ "learning_rate": 3.895612708018154e-08,
1851
+ "logps/chosen": -32.80045700073242,
1852
+ "logps/rejected": -26.297595977783203,
1853
+ "loss": 0.6938,
1854
+ "losses/dpo": 0.6875132918357849,
1855
+ "losses/sft": 0.7562694549560547,
1856
+ "losses/total": 0.6875132918357849,
1857
+ "ref_logps/chosen": -32.78963088989258,
1858
+ "ref_logps/rejected": -26.29842185974121,
1859
+ "rewards/accuracies": 0.5,
1860
+ "rewards/chosen": -0.0010827300138771534,
1861
+ "rewards/margins": -0.0011653571855276823,
1862
+ "rewards/rejected": 8.262717165052891e-05,
1863
+ "step": 103
1864
+ },
1865
+ {
1866
+ "epoch": 0.02,
1867
+ "grad_norm": 35.90760803222656,
1868
+ "learning_rate": 3.9334341906202725e-08,
1869
+ "logps/chosen": -25.600452423095703,
1870
+ "logps/rejected": -26.01952362060547,
1871
+ "loss": 0.6905,
1872
+ "losses/dpo": 0.6928426623344421,
1873
+ "losses/sft": 0.560149610042572,
1874
+ "losses/total": 0.6928426623344421,
1875
+ "ref_logps/chosen": -25.59532928466797,
1876
+ "ref_logps/rejected": -25.960851669311523,
1877
+ "rewards/accuracies": 0.75,
1878
+ "rewards/chosen": -0.000512230210006237,
1879
+ "rewards/margins": 0.0053548929281532764,
1880
+ "rewards/rejected": -0.005867123603820801,
1881
+ "step": 104
1882
+ },
1883
+ {
1884
+ "epoch": 0.02,
1885
+ "grad_norm": 41.926326751708984,
1886
+ "learning_rate": 3.97125567322239e-08,
1887
+ "logps/chosen": -24.64590835571289,
1888
+ "logps/rejected": -47.35856628417969,
1889
+ "loss": 0.6903,
1890
+ "losses/dpo": 0.6918473243713379,
1891
+ "losses/sft": 0.6405824422836304,
1892
+ "losses/total": 0.6918473243713379,
1893
+ "ref_logps/chosen": -24.60011863708496,
1894
+ "ref_logps/rejected": -47.25457000732422,
1895
+ "rewards/accuracies": 0.5,
1896
+ "rewards/chosen": -0.004578936379402876,
1897
+ "rewards/margins": 0.0058210729621350765,
1898
+ "rewards/rejected": -0.010400008410215378,
1899
+ "step": 105
1900
+ },
1901
+ {
1902
+ "epoch": 0.02,
1903
+ "grad_norm": 44.33354568481445,
1904
+ "learning_rate": 4.0090771558245085e-08,
1905
+ "logps/chosen": -32.457977294921875,
1906
+ "logps/rejected": -37.6816291809082,
1907
+ "loss": 0.7012,
1908
+ "losses/dpo": 0.6904045343399048,
1909
+ "losses/sft": 0.4094051718711853,
1910
+ "losses/total": 0.6904045343399048,
1911
+ "ref_logps/chosen": -32.348350524902344,
1912
+ "ref_logps/rejected": -37.73137283325195,
1913
+ "rewards/accuracies": 0.375,
1914
+ "rewards/chosen": -0.010962343774735928,
1915
+ "rewards/margins": -0.015936829149723053,
1916
+ "rewards/rejected": 0.004974484443664551,
1917
+ "step": 106
1918
+ },
1919
+ {
1920
+ "epoch": 0.02,
1921
+ "grad_norm": 50.068389892578125,
1922
+ "learning_rate": 4.046898638426626e-08,
1923
+ "logps/chosen": -57.488861083984375,
1924
+ "logps/rejected": -45.16341018676758,
1925
+ "loss": 0.7013,
1926
+ "losses/dpo": 0.6909089684486389,
1927
+ "losses/sft": 0.7873000502586365,
1928
+ "losses/total": 0.6909089684486389,
1929
+ "ref_logps/chosen": -57.47578811645508,
1930
+ "ref_logps/rejected": -45.31059265136719,
1931
+ "rewards/accuracies": 0.375,
1932
+ "rewards/chosen": -0.0013074756134301424,
1933
+ "rewards/margins": -0.01602541282773018,
1934
+ "rewards/rejected": 0.014717936515808105,
1935
+ "step": 107
1936
+ },
1937
+ {
1938
+ "epoch": 0.02,
1939
+ "grad_norm": 61.65685272216797,
1940
+ "learning_rate": 4.084720121028744e-08,
1941
+ "logps/chosen": -76.06755065917969,
1942
+ "logps/rejected": -79.65231323242188,
1943
+ "loss": 0.6854,
1944
+ "losses/dpo": 0.7170514464378357,
1945
+ "losses/sft": 1.8121122121810913,
1946
+ "losses/total": 0.7170514464378357,
1947
+ "ref_logps/chosen": -76.13177490234375,
1948
+ "ref_logps/rejected": -79.55784606933594,
1949
+ "rewards/accuracies": 0.75,
1950
+ "rewards/chosen": 0.006422186270356178,
1951
+ "rewards/margins": 0.01586904563009739,
1952
+ "rewards/rejected": -0.009446859359741211,
1953
+ "step": 108
1954
+ },
1955
+ {
1956
+ "epoch": 0.02,
1957
+ "grad_norm": 41.34520721435547,
1958
+ "learning_rate": 4.1225416036308624e-08,
1959
+ "logps/chosen": -30.94908332824707,
1960
+ "logps/rejected": -31.076162338256836,
1961
+ "loss": 0.7003,
1962
+ "losses/dpo": 0.7072453498840332,
1963
+ "losses/sft": 0.6860259175300598,
1964
+ "losses/total": 0.7072453498840332,
1965
+ "ref_logps/chosen": -30.907779693603516,
1966
+ "ref_logps/rejected": -31.175491333007812,
1967
+ "rewards/accuracies": 0.375,
1968
+ "rewards/chosen": -0.004130268469452858,
1969
+ "rewards/margins": -0.014063073322176933,
1970
+ "rewards/rejected": 0.009932804852724075,
1971
+ "step": 109
1972
+ },
1973
+ {
1974
+ "epoch": 0.02,
1975
+ "grad_norm": 39.601680755615234,
1976
+ "learning_rate": 4.16036308623298e-08,
1977
+ "logps/chosen": -29.889883041381836,
1978
+ "logps/rejected": -29.010711669921875,
1979
+ "loss": 0.6875,
1980
+ "losses/dpo": 0.6812564730644226,
1981
+ "losses/sft": 0.33825215697288513,
1982
+ "losses/total": 0.6812564730644226,
1983
+ "ref_logps/chosen": -29.933313369750977,
1984
+ "ref_logps/rejected": -28.940982818603516,
1985
+ "rewards/accuracies": 0.75,
1986
+ "rewards/chosen": 0.004343009553849697,
1987
+ "rewards/margins": 0.011315608397126198,
1988
+ "rewards/rejected": -0.006972598843276501,
1989
+ "step": 110
1990
+ },
1991
+ {
1992
+ "epoch": 0.03,
1993
+ "grad_norm": 43.49833297729492,
1994
+ "learning_rate": 4.1981845688350985e-08,
1995
+ "logps/chosen": -28.440502166748047,
1996
+ "logps/rejected": -31.334300994873047,
1997
+ "loss": 0.6842,
1998
+ "losses/dpo": 0.6787906885147095,
1999
+ "losses/sft": 0.6913360953330994,
2000
+ "losses/total": 0.6787906885147095,
2001
+ "ref_logps/chosen": -28.545825958251953,
2002
+ "ref_logps/rejected": -31.25735092163086,
2003
+ "rewards/accuracies": 0.75,
2004
+ "rewards/chosen": 0.01053229533135891,
2005
+ "rewards/margins": 0.018227243795990944,
2006
+ "rewards/rejected": -0.007694947998970747,
2007
+ "step": 111
2008
+ },
2009
+ {
2010
+ "epoch": 0.03,
2011
+ "grad_norm": 32.026695251464844,
2012
+ "learning_rate": 4.236006051437216e-08,
2013
+ "logps/chosen": -37.945472717285156,
2014
+ "logps/rejected": -24.111562728881836,
2015
+ "loss": 0.6889,
2016
+ "losses/dpo": 0.6931471824645996,
2017
+ "losses/sft": 0.2837979197502136,
2018
+ "losses/total": 0.6931471824645996,
2019
+ "ref_logps/chosen": -37.992347717285156,
2020
+ "ref_logps/rejected": -24.073345184326172,
2021
+ "rewards/accuracies": 0.75,
2022
+ "rewards/chosen": 0.004687649197876453,
2023
+ "rewards/margins": 0.008509386330842972,
2024
+ "rewards/rejected": -0.003821736667305231,
2025
+ "step": 112
2026
+ },
2027
+ {
2028
+ "epoch": 0.03,
2029
+ "grad_norm": 39.62443161010742,
2030
+ "learning_rate": 4.2738275340393346e-08,
2031
+ "logps/chosen": -37.079071044921875,
2032
+ "logps/rejected": -39.647586822509766,
2033
+ "loss": 0.6918,
2034
+ "losses/dpo": 0.6931471824645996,
2035
+ "losses/sft": 0.15460079908370972,
2036
+ "losses/total": 0.6931471824645996,
2037
+ "ref_logps/chosen": -37.13287353515625,
2038
+ "ref_logps/rejected": -39.6738395690918,
2039
+ "rewards/accuracies": 0.375,
2040
+ "rewards/chosen": 0.005380382761359215,
2041
+ "rewards/margins": 0.002755367662757635,
2042
+ "rewards/rejected": 0.002625015564262867,
2043
+ "step": 113
2044
+ },
2045
+ {
2046
+ "epoch": 0.03,
2047
+ "grad_norm": 38.18842697143555,
2048
+ "learning_rate": 4.311649016641452e-08,
2049
+ "logps/chosen": -25.791282653808594,
2050
+ "logps/rejected": -32.9259033203125,
2051
+ "loss": 0.6933,
2052
+ "losses/dpo": 0.6931471824645996,
2053
+ "losses/sft": 0.6581792831420898,
2054
+ "losses/total": 0.6931471824645996,
2055
+ "ref_logps/chosen": -25.775999069213867,
2056
+ "ref_logps/rejected": -32.91184997558594,
2057
+ "rewards/accuracies": 0.375,
2058
+ "rewards/chosen": -0.0015283345710486174,
2059
+ "rewards/margins": -0.00012282142415642738,
2060
+ "rewards/rejected": -0.0014055129140615463,
2061
+ "step": 114
2062
+ },
2063
+ {
2064
+ "epoch": 0.03,
2065
+ "grad_norm": 52.07583999633789,
2066
+ "learning_rate": 4.34947049924357e-08,
2067
+ "logps/chosen": -41.8395881652832,
2068
+ "logps/rejected": -44.14722442626953,
2069
+ "loss": 0.6899,
2070
+ "losses/dpo": 0.6931471824645996,
2071
+ "losses/sft": 0.8708814382553101,
2072
+ "losses/total": 0.6931471824645996,
2073
+ "ref_logps/chosen": -41.82201385498047,
2074
+ "ref_logps/rejected": -44.06287384033203,
2075
+ "rewards/accuracies": 0.625,
2076
+ "rewards/chosen": -0.001757478341460228,
2077
+ "rewards/margins": 0.006677555851638317,
2078
+ "rewards/rejected": -0.00843503512442112,
2079
+ "step": 115
2080
+ },
2081
+ {
2082
+ "epoch": 0.03,
2083
+ "grad_norm": 33.54158020019531,
2084
+ "learning_rate": 4.387291981845688e-08,
2085
+ "logps/chosen": -32.49979782104492,
2086
+ "logps/rejected": -17.52083969116211,
2087
+ "loss": 0.6952,
2088
+ "losses/dpo": 0.6925131678581238,
2089
+ "losses/sft": 0.14384517073631287,
2090
+ "losses/total": 0.6925131678581238,
2091
+ "ref_logps/chosen": -32.42995071411133,
2092
+ "ref_logps/rejected": -17.491504669189453,
2093
+ "rewards/accuracies": 0.5,
2094
+ "rewards/chosen": -0.006984531879425049,
2095
+ "rewards/margins": -0.0040509942919015884,
2096
+ "rewards/rejected": -0.0029335380531847477,
2097
+ "step": 116
2098
+ },
2099
+ {
2100
+ "epoch": 0.03,
2101
+ "grad_norm": 37.52485275268555,
2102
+ "learning_rate": 4.425113464447806e-08,
2103
+ "logps/chosen": -39.653236389160156,
2104
+ "logps/rejected": -26.307018280029297,
2105
+ "loss": 0.6949,
2106
+ "losses/dpo": 0.6901547908782959,
2107
+ "losses/sft": 0.5280264019966125,
2108
+ "losses/total": 0.6901547908782959,
2109
+ "ref_logps/chosen": -39.55583953857422,
2110
+ "ref_logps/rejected": -26.243160247802734,
2111
+ "rewards/accuracies": 0.5,
2112
+ "rewards/chosen": -0.009739398956298828,
2113
+ "rewards/margins": -0.003353619948029518,
2114
+ "rewards/rejected": -0.006385779473930597,
2115
+ "step": 117
2116
+ },
2117
+ {
2118
+ "epoch": 0.03,
2119
+ "grad_norm": 44.086185455322266,
2120
+ "learning_rate": 4.462934947049924e-08,
2121
+ "logps/chosen": -39.232688903808594,
2122
+ "logps/rejected": -61.158592224121094,
2123
+ "loss": 0.6861,
2124
+ "losses/dpo": 0.6927624940872192,
2125
+ "losses/sft": 0.3766418695449829,
2126
+ "losses/total": 0.6927624940872192,
2127
+ "ref_logps/chosen": -39.291038513183594,
2128
+ "ref_logps/rejected": -61.07466125488281,
2129
+ "rewards/accuracies": 0.625,
2130
+ "rewards/chosen": 0.005835331045091152,
2131
+ "rewards/margins": 0.014228129759430885,
2132
+ "rewards/rejected": -0.008392797783017159,
2133
+ "step": 118
2134
+ },
2135
+ {
2136
+ "epoch": 0.03,
2137
+ "grad_norm": 35.55986785888672,
2138
+ "learning_rate": 4.500756429652042e-08,
2139
+ "logps/chosen": -26.11540985107422,
2140
+ "logps/rejected": -20.935359954833984,
2141
+ "loss": 0.698,
2142
+ "losses/dpo": 0.6918513774871826,
2143
+ "losses/sft": 1.0432565212249756,
2144
+ "losses/total": 0.6918513774871826,
2145
+ "ref_logps/chosen": -26.03144073486328,
2146
+ "ref_logps/rejected": -20.945743560791016,
2147
+ "rewards/accuracies": 0.5,
2148
+ "rewards/chosen": -0.008397170342504978,
2149
+ "rewards/margins": -0.009435638785362244,
2150
+ "rewards/rejected": 0.0010384678607806563,
2151
+ "step": 119
2152
+ },
2153
+ {
2154
+ "epoch": 0.03,
2155
+ "grad_norm": 39.22114944458008,
2156
+ "learning_rate": 4.53857791225416e-08,
2157
+ "logps/chosen": -29.81409454345703,
2158
+ "logps/rejected": -39.67371368408203,
2159
+ "loss": 0.6915,
2160
+ "losses/dpo": 0.6931471824645996,
2161
+ "losses/sft": 0.7685847878456116,
2162
+ "losses/total": 0.6931471824645996,
2163
+ "ref_logps/chosen": -29.86721420288086,
2164
+ "ref_logps/rejected": -39.69112777709961,
2165
+ "rewards/accuracies": 0.375,
2166
+ "rewards/chosen": 0.005311918444931507,
2167
+ "rewards/margins": 0.003570293541997671,
2168
+ "rewards/rejected": 0.0017416239716112614,
2169
+ "step": 120
2170
+ },
2171
+ {
2172
+ "epoch": 0.03,
2173
+ "grad_norm": 34.359615325927734,
2174
+ "learning_rate": 4.576399394856278e-08,
2175
+ "logps/chosen": -17.609037399291992,
2176
+ "logps/rejected": -33.15533447265625,
2177
+ "loss": 0.6903,
2178
+ "losses/dpo": 0.6952323913574219,
2179
+ "losses/sft": 0.41854506731033325,
2180
+ "losses/total": 0.6952323913574219,
2181
+ "ref_logps/chosen": -17.5953369140625,
2182
+ "ref_logps/rejected": -33.08323669433594,
2183
+ "rewards/accuracies": 0.25,
2184
+ "rewards/chosen": -0.0013699710834771395,
2185
+ "rewards/margins": 0.005839664954692125,
2186
+ "rewards/rejected": -0.007209635339677334,
2187
+ "step": 121
2188
+ },
2189
+ {
2190
+ "epoch": 0.03,
2191
+ "grad_norm": 36.893653869628906,
2192
+ "learning_rate": 4.614220877458396e-08,
2193
+ "logps/chosen": -29.187511444091797,
2194
+ "logps/rejected": -28.67523956298828,
2195
+ "loss": 0.6968,
2196
+ "losses/dpo": 0.6963827013969421,
2197
+ "losses/sft": 0.2885913848876953,
2198
+ "losses/total": 0.6963827013969421,
2199
+ "ref_logps/chosen": -29.182682037353516,
2200
+ "ref_logps/rejected": -28.74280548095703,
2201
+ "rewards/accuracies": 0.375,
2202
+ "rewards/chosen": -0.0004826546646654606,
2203
+ "rewards/margins": -0.007239234633743763,
2204
+ "rewards/rejected": 0.00675658043473959,
2205
+ "step": 122
2206
+ },
2207
+ {
2208
+ "epoch": 0.03,
2209
+ "grad_norm": 30.719209671020508,
2210
+ "learning_rate": 4.652042360060514e-08,
2211
+ "logps/chosen": -26.74323081970215,
2212
+ "logps/rejected": -24.072521209716797,
2213
+ "loss": 0.6907,
2214
+ "losses/dpo": 0.6998178958892822,
2215
+ "losses/sft": 0.9175503849983215,
2216
+ "losses/total": 0.6998178958892822,
2217
+ "ref_logps/chosen": -26.759307861328125,
2218
+ "ref_logps/rejected": -24.038970947265625,
2219
+ "rewards/accuracies": 0.375,
2220
+ "rewards/chosen": 0.001607751939445734,
2221
+ "rewards/margins": 0.004962801933288574,
2222
+ "rewards/rejected": -0.00335504999384284,
2223
+ "step": 123
2224
+ },
2225
+ {
2226
+ "epoch": 0.03,
2227
+ "grad_norm": 35.995609283447266,
2228
+ "learning_rate": 4.689863842662632e-08,
2229
+ "logps/chosen": -24.474266052246094,
2230
+ "logps/rejected": -30.566516876220703,
2231
+ "loss": 0.6852,
2232
+ "losses/dpo": 0.7060790061950684,
2233
+ "losses/sft": 0.5684544444084167,
2234
+ "losses/total": 0.7060790061950684,
2235
+ "ref_logps/chosen": -24.575531005859375,
2236
+ "ref_logps/rejected": -30.50520133972168,
2237
+ "rewards/accuracies": 0.625,
2238
+ "rewards/chosen": 0.010126292705535889,
2239
+ "rewards/margins": 0.016257895156741142,
2240
+ "rewards/rejected": -0.006131601519882679,
2241
+ "step": 124
2242
+ },
2243
+ {
2244
+ "epoch": 0.03,
2245
+ "grad_norm": 40.390480041503906,
2246
+ "learning_rate": 4.72768532526475e-08,
2247
+ "logps/chosen": -47.56864547729492,
2248
+ "logps/rejected": -27.925689697265625,
2249
+ "loss": 0.6911,
2250
+ "losses/dpo": 0.6941109299659729,
2251
+ "losses/sft": 0.761809766292572,
2252
+ "losses/total": 0.6941109299659729,
2253
+ "ref_logps/chosen": -47.580238342285156,
2254
+ "ref_logps/rejected": -27.895416259765625,
2255
+ "rewards/accuracies": 0.375,
2256
+ "rewards/chosen": 0.0011593580711632967,
2257
+ "rewards/margins": 0.004186606500297785,
2258
+ "rewards/rejected": -0.0030272486619651318,
2259
+ "step": 125
2260
+ },
2261
+ {
2262
+ "epoch": 0.03,
2263
+ "grad_norm": 43.70969772338867,
2264
+ "learning_rate": 4.765506807866868e-08,
2265
+ "logps/chosen": -47.28679656982422,
2266
+ "logps/rejected": -31.254356384277344,
2267
+ "loss": 0.6898,
2268
+ "losses/dpo": 0.701967179775238,
2269
+ "losses/sft": 0.725429356098175,
2270
+ "losses/total": 0.701967179775238,
2271
+ "ref_logps/chosen": -47.3563346862793,
2272
+ "ref_logps/rejected": -31.255340576171875,
2273
+ "rewards/accuracies": 0.625,
2274
+ "rewards/chosen": 0.006953556090593338,
2275
+ "rewards/margins": 0.006855214014649391,
2276
+ "rewards/rejected": 9.834184311330318e-05,
2277
+ "step": 126
2278
+ },
2279
+ {
2280
+ "epoch": 0.03,
2281
+ "grad_norm": 32.73550033569336,
2282
+ "learning_rate": 4.803328290468986e-08,
2283
+ "logps/chosen": -29.04664421081543,
2284
+ "logps/rejected": -38.83638000488281,
2285
+ "loss": 0.6903,
2286
+ "losses/dpo": 0.6931471824645996,
2287
+ "losses/sft": 0.23836013674736023,
2288
+ "losses/total": 0.6931471824645996,
2289
+ "ref_logps/chosen": -29.14601707458496,
2290
+ "ref_logps/rejected": -38.87748718261719,
2291
+ "rewards/accuracies": 0.5,
2292
+ "rewards/chosen": 0.009937328286468983,
2293
+ "rewards/margins": 0.005826891399919987,
2294
+ "rewards/rejected": 0.004110437817871571,
2295
+ "step": 127
2296
+ },
2297
+ {
2298
+ "epoch": 0.03,
2299
+ "grad_norm": 33.31587219238281,
2300
+ "learning_rate": 4.841149773071104e-08,
2301
+ "logps/chosen": -17.702585220336914,
2302
+ "logps/rejected": -33.756351470947266,
2303
+ "loss": 0.6883,
2304
+ "losses/dpo": 0.6917657852172852,
2305
+ "losses/sft": 0.695366621017456,
2306
+ "losses/total": 0.6917657852172852,
2307
+ "ref_logps/chosen": -17.81790542602539,
2308
+ "ref_logps/rejected": -33.7726936340332,
2309
+ "rewards/accuracies": 0.625,
2310
+ "rewards/chosen": 0.011532002128660679,
2311
+ "rewards/margins": 0.009898019023239613,
2312
+ "rewards/rejected": 0.0016339838039129972,
2313
+ "step": 128
2314
+ },
2315
+ {
2316
+ "epoch": 0.03,
2317
+ "grad_norm": 34.78561782836914,
2318
+ "learning_rate": 4.878971255673222e-08,
2319
+ "logps/chosen": -31.822887420654297,
2320
+ "logps/rejected": -31.502132415771484,
2321
+ "loss": 0.6918,
2322
+ "losses/dpo": 0.6878577470779419,
2323
+ "losses/sft": 0.6958499550819397,
2324
+ "losses/total": 0.6878577470779419,
2325
+ "ref_logps/chosen": -31.875709533691406,
2326
+ "ref_logps/rejected": -31.527292251586914,
2327
+ "rewards/accuracies": 0.625,
2328
+ "rewards/chosen": 0.005282568745315075,
2329
+ "rewards/margins": 0.002766538178548217,
2330
+ "rewards/rejected": 0.0025160307995975018,
2331
+ "step": 129
2332
+ },
2333
+ {
2334
+ "epoch": 0.03,
2335
+ "grad_norm": 39.473045349121094,
2336
+ "learning_rate": 4.9167927382753404e-08,
2337
+ "logps/chosen": -48.424564361572266,
2338
+ "logps/rejected": -37.70363998413086,
2339
+ "loss": 0.6907,
2340
+ "losses/dpo": 0.6958696246147156,
2341
+ "losses/sft": 1.0931024551391602,
2342
+ "losses/total": 0.6958696246147156,
2343
+ "ref_logps/chosen": -48.39546585083008,
2344
+ "ref_logps/rejected": -37.62480545043945,
2345
+ "rewards/accuracies": 0.5,
2346
+ "rewards/chosen": -0.0029095769859850407,
2347
+ "rewards/margins": 0.004973782226443291,
2348
+ "rewards/rejected": -0.007883358746767044,
2349
+ "step": 130
2350
+ },
2351
+ {
2352
+ "epoch": 0.03,
2353
+ "grad_norm": 40.11540985107422,
2354
+ "learning_rate": 4.954614220877458e-08,
2355
+ "logps/chosen": -47.275970458984375,
2356
+ "logps/rejected": -24.532180786132812,
2357
+ "loss": 0.6891,
2358
+ "losses/dpo": 0.686172366142273,
2359
+ "losses/sft": 0.23291173577308655,
2360
+ "losses/total": 0.686172366142273,
2361
+ "ref_logps/chosen": -47.30372619628906,
2362
+ "ref_logps/rejected": -24.47891616821289,
2363
+ "rewards/accuracies": 0.625,
2364
+ "rewards/chosen": 0.0027754190377891064,
2365
+ "rewards/margins": 0.008101915940642357,
2366
+ "rewards/rejected": -0.005326497368514538,
2367
+ "step": 131
2368
+ },
2369
+ {
2370
+ "epoch": 0.03,
2371
+ "grad_norm": 35.008811950683594,
2372
+ "learning_rate": 4.9924357034795765e-08,
2373
+ "logps/chosen": -22.004154205322266,
2374
+ "logps/rejected": -25.471179962158203,
2375
+ "loss": 0.6983,
2376
+ "losses/dpo": 0.6931471824645996,
2377
+ "losses/sft": 0.5767898559570312,
2378
+ "losses/total": 0.6931471824645996,
2379
+ "ref_logps/chosen": -22.0076847076416,
2380
+ "ref_logps/rejected": -25.575210571289062,
2381
+ "rewards/accuracies": 0.375,
2382
+ "rewards/chosen": 0.00035313377156853676,
2383
+ "rewards/margins": -0.010050022043287754,
2384
+ "rewards/rejected": 0.010403156280517578,
2385
+ "step": 132
2386
+ },
2387
+ {
2388
+ "epoch": 0.03,
2389
+ "grad_norm": 48.81768035888672,
2390
+ "learning_rate": 5.030257186081694e-08,
2391
+ "logps/chosen": -41.83135223388672,
2392
+ "logps/rejected": -61.698612213134766,
2393
+ "loss": 0.6887,
2394
+ "losses/dpo": 0.69705730676651,
2395
+ "losses/sft": 0.6419839262962341,
2396
+ "losses/total": 0.69705730676651,
2397
+ "ref_logps/chosen": -41.8665771484375,
2398
+ "ref_logps/rejected": -61.644554138183594,
2399
+ "rewards/accuracies": 0.625,
2400
+ "rewards/chosen": 0.0035225865431129932,
2401
+ "rewards/margins": 0.008928824216127396,
2402
+ "rewards/rejected": -0.005406237207353115,
2403
+ "step": 133
2404
+ },
2405
+ {
2406
+ "epoch": 0.03,
2407
+ "grad_norm": 35.35521697998047,
2408
+ "learning_rate": 5.0680786686838126e-08,
2409
+ "logps/chosen": -42.63499450683594,
2410
+ "logps/rejected": -18.00177001953125,
2411
+ "loss": 0.6887,
2412
+ "losses/dpo": 0.6931471824645996,
2413
+ "losses/sft": 0.22498027980327606,
2414
+ "losses/total": 0.6931471824645996,
2415
+ "ref_logps/chosen": -42.69081115722656,
2416
+ "ref_logps/rejected": -17.965286254882812,
2417
+ "rewards/accuracies": 0.25,
2418
+ "rewards/chosen": 0.005581945180892944,
2419
+ "rewards/margins": 0.009230315685272217,
2420
+ "rewards/rejected": -0.0036483705043792725,
2421
+ "step": 134
2422
+ },
2423
+ {
2424
+ "epoch": 0.03,
2425
+ "grad_norm": 37.32074737548828,
2426
+ "learning_rate": 5.10590015128593e-08,
2427
+ "logps/chosen": -28.98600196838379,
2428
+ "logps/rejected": -28.591854095458984,
2429
+ "loss": 0.6916,
2430
+ "losses/dpo": 0.6911870241165161,
2431
+ "losses/sft": 0.32320740818977356,
2432
+ "losses/total": 0.6911870241165161,
2433
+ "ref_logps/chosen": -28.984033584594727,
2434
+ "ref_logps/rejected": -28.557567596435547,
2435
+ "rewards/accuracies": 0.625,
2436
+ "rewards/chosen": -0.00019681453704833984,
2437
+ "rewards/margins": 0.003232082584872842,
2438
+ "rewards/rejected": -0.0034288971219211817,
2439
+ "step": 135
2440
+ },
2441
+ {
2442
+ "epoch": 0.03,
2443
+ "grad_norm": 38.866493225097656,
2444
+ "learning_rate": 5.143721633888049e-08,
2445
+ "logps/chosen": -40.32871627807617,
2446
+ "logps/rejected": -39.726768493652344,
2447
+ "loss": 0.69,
2448
+ "losses/dpo": 0.6905131936073303,
2449
+ "losses/sft": 1.158380150794983,
2450
+ "losses/total": 0.6905131936073303,
2451
+ "ref_logps/chosen": -40.46543884277344,
2452
+ "ref_logps/rejected": -39.79895782470703,
2453
+ "rewards/accuracies": 0.5,
2454
+ "rewards/chosen": 0.013672376051545143,
2455
+ "rewards/margins": 0.0064532398246228695,
2456
+ "rewards/rejected": 0.007219136226922274,
2457
+ "step": 136
2458
+ },
2459
+ {
2460
+ "epoch": 0.03,
2461
+ "grad_norm": 37.07709884643555,
2462
+ "learning_rate": 5.1815431164901664e-08,
2463
+ "logps/chosen": -27.539257049560547,
2464
+ "logps/rejected": -27.673938751220703,
2465
+ "loss": 0.7006,
2466
+ "losses/dpo": 0.6891195774078369,
2467
+ "losses/sft": 1.0018857717514038,
2468
+ "losses/total": 0.6891195774078369,
2469
+ "ref_logps/chosen": -27.427831649780273,
2470
+ "ref_logps/rejected": -27.70747947692871,
2471
+ "rewards/accuracies": 0.5,
2472
+ "rewards/chosen": -0.011142684146761894,
2473
+ "rewards/margins": -0.014496791176497936,
2474
+ "rewards/rejected": 0.0033541086595505476,
2475
+ "step": 137
2476
+ },
2477
+ {
2478
+ "epoch": 0.03,
2479
+ "grad_norm": 38.496559143066406,
2480
+ "learning_rate": 5.219364599092285e-08,
2481
+ "logps/chosen": -22.926864624023438,
2482
+ "logps/rejected": -38.9444580078125,
2483
+ "loss": 0.699,
2484
+ "losses/dpo": 0.6990444660186768,
2485
+ "losses/sft": 0.39025476574897766,
2486
+ "losses/total": 0.6990444660186768,
2487
+ "ref_logps/chosen": -22.85403823852539,
2488
+ "ref_logps/rejected": -38.987823486328125,
2489
+ "rewards/accuracies": 0.25,
2490
+ "rewards/chosen": -0.007282680831849575,
2491
+ "rewards/margins": -0.011619050055742264,
2492
+ "rewards/rejected": 0.004336369223892689,
2493
+ "step": 138
2494
+ },
2495
+ {
2496
+ "epoch": 0.03,
2497
+ "grad_norm": 22.79326629638672,
2498
+ "learning_rate": 5.2571860816944025e-08,
2499
+ "logps/chosen": -18.254146575927734,
2500
+ "logps/rejected": -24.10297966003418,
2501
+ "loss": 0.69,
2502
+ "losses/dpo": 0.6989715099334717,
2503
+ "losses/sft": 0.46928051114082336,
2504
+ "losses/total": 0.6989715099334717,
2505
+ "ref_logps/chosen": -18.28525161743164,
2506
+ "ref_logps/rejected": -24.071096420288086,
2507
+ "rewards/accuracies": 0.625,
2508
+ "rewards/chosen": 0.003110540099442005,
2509
+ "rewards/margins": 0.006298840045928955,
2510
+ "rewards/rejected": -0.0031883001793175936,
2511
+ "step": 139
2512
+ },
2513
+ {
2514
+ "epoch": 0.03,
2515
+ "grad_norm": 45.97643280029297,
2516
+ "learning_rate": 5.2950075642965196e-08,
2517
+ "logps/chosen": -33.01849365234375,
2518
+ "logps/rejected": -40.95310974121094,
2519
+ "loss": 0.698,
2520
+ "losses/dpo": 0.6955220103263855,
2521
+ "losses/sft": 0.3267292082309723,
2522
+ "losses/total": 0.6955220103263855,
2523
+ "ref_logps/chosen": -32.911224365234375,
2524
+ "ref_logps/rejected": -40.94056701660156,
2525
+ "rewards/accuracies": 0.25,
2526
+ "rewards/chosen": -0.010726600885391235,
2527
+ "rewards/margins": -0.00947202555835247,
2528
+ "rewards/rejected": -0.0012545764911919832,
2529
+ "step": 140
2530
+ },
2531
+ {
2532
+ "epoch": 0.03,
2533
+ "grad_norm": 35.01676940917969,
2534
+ "learning_rate": 5.332829046898638e-08,
2535
+ "logps/chosen": -37.70044708251953,
2536
+ "logps/rejected": -25.797130584716797,
2537
+ "loss": 0.6923,
2538
+ "losses/dpo": 0.6944743990898132,
2539
+ "losses/sft": 0.46885228157043457,
2540
+ "losses/total": 0.6944743990898132,
2541
+ "ref_logps/chosen": -37.66633605957031,
2542
+ "ref_logps/rejected": -25.7462158203125,
2543
+ "rewards/accuracies": 0.375,
2544
+ "rewards/chosen": -0.0034110904671251774,
2545
+ "rewards/margins": 0.0016802309546619654,
2546
+ "rewards/rejected": -0.005091322120279074,
2547
+ "step": 141
2548
+ },
2549
+ {
2550
+ "epoch": 0.03,
2551
+ "grad_norm": 46.63210678100586,
2552
+ "learning_rate": 5.3706505295007557e-08,
2553
+ "logps/chosen": -44.68863296508789,
2554
+ "logps/rejected": -44.29450988769531,
2555
+ "loss": 0.6917,
2556
+ "losses/dpo": 0.6931471824645996,
2557
+ "losses/sft": 0.3401167392730713,
2558
+ "losses/total": 0.6931471824645996,
2559
+ "ref_logps/chosen": -44.73490524291992,
2560
+ "ref_logps/rejected": -44.3111572265625,
2561
+ "rewards/accuracies": 0.5,
2562
+ "rewards/chosen": 0.004627292975783348,
2563
+ "rewards/margins": 0.0029626486357301474,
2564
+ "rewards/rejected": 0.0016646445728838444,
2565
+ "step": 142
2566
+ },
2567
+ {
2568
+ "epoch": 0.03,
2569
+ "grad_norm": 39.051780700683594,
2570
+ "learning_rate": 5.408472012102874e-08,
2571
+ "logps/chosen": -32.727230072021484,
2572
+ "logps/rejected": -24.590736389160156,
2573
+ "loss": 0.6913,
2574
+ "losses/dpo": 0.6861852407455444,
2575
+ "losses/sft": 0.829793393611908,
2576
+ "losses/total": 0.6861852407455444,
2577
+ "ref_logps/chosen": -32.69562911987305,
2578
+ "ref_logps/rejected": -24.520002365112305,
2579
+ "rewards/accuracies": 0.625,
2580
+ "rewards/chosen": -0.0031601781956851482,
2581
+ "rewards/margins": 0.003913199529051781,
2582
+ "rewards/rejected": -0.007073379121720791,
2583
+ "step": 143
2584
+ },
2585
+ {
2586
+ "epoch": 0.03,
2587
+ "grad_norm": 52.55834197998047,
2588
+ "learning_rate": 5.446293494704992e-08,
2589
+ "logps/chosen": -63.71332550048828,
2590
+ "logps/rejected": -49.05284881591797,
2591
+ "loss": 0.6943,
2592
+ "losses/dpo": 0.6921186447143555,
2593
+ "losses/sft": 0.3558349907398224,
2594
+ "losses/total": 0.6921186447143555,
2595
+ "ref_logps/chosen": -63.716209411621094,
2596
+ "ref_logps/rejected": -49.073699951171875,
2597
+ "rewards/accuracies": 0.625,
2598
+ "rewards/chosen": 0.00028821243904531,
2599
+ "rewards/margins": -0.0017975267255678773,
2600
+ "rewards/rejected": 0.0020857397466897964,
2601
+ "step": 144
2602
+ },
2603
+ {
2604
+ "epoch": 0.03,
2605
+ "grad_norm": 40.16358184814453,
2606
+ "learning_rate": 5.48411497730711e-08,
2607
+ "logps/chosen": -45.54597473144531,
2608
+ "logps/rejected": -27.000322341918945,
2609
+ "loss": 0.6912,
2610
+ "losses/dpo": 0.6931471824645996,
2611
+ "losses/sft": 1.1267122030258179,
2612
+ "losses/total": 0.6931471824645996,
2613
+ "ref_logps/chosen": -45.54884338378906,
2614
+ "ref_logps/rejected": -26.963048934936523,
2615
+ "rewards/accuracies": 0.625,
2616
+ "rewards/chosen": 0.00028649577870965004,
2617
+ "rewards/margins": 0.00401383638381958,
2618
+ "rewards/rejected": -0.0037273408379405737,
2619
+ "step": 145
2620
+ },
2621
+ {
2622
+ "epoch": 0.03,
2623
+ "grad_norm": 38.33798599243164,
2624
+ "learning_rate": 5.521936459909228e-08,
2625
+ "logps/chosen": -42.34248352050781,
2626
+ "logps/rejected": -28.343761444091797,
2627
+ "loss": 0.6904,
2628
+ "losses/dpo": 0.7000496983528137,
2629
+ "losses/sft": 1.3564696311950684,
2630
+ "losses/total": 0.7000496983528137,
2631
+ "ref_logps/chosen": -42.38239288330078,
2632
+ "ref_logps/rejected": -28.327028274536133,
2633
+ "rewards/accuracies": 0.625,
2634
+ "rewards/chosen": 0.003990745171904564,
2635
+ "rewards/margins": 0.0056642405688762665,
2636
+ "rewards/rejected": -0.0016734958626329899,
2637
+ "step": 146
2638
+ },
2639
+ {
2640
+ "epoch": 0.03,
2641
+ "grad_norm": 34.70563888549805,
2642
+ "learning_rate": 5.559757942511346e-08,
2643
+ "logps/chosen": -29.78840446472168,
2644
+ "logps/rejected": -30.435606002807617,
2645
+ "loss": 0.6914,
2646
+ "losses/dpo": 0.6939413547515869,
2647
+ "losses/sft": 0.7547587156295776,
2648
+ "losses/total": 0.6939413547515869,
2649
+ "ref_logps/chosen": -29.82432746887207,
2650
+ "ref_logps/rejected": -30.435745239257812,
2651
+ "rewards/accuracies": 0.5,
2652
+ "rewards/chosen": 0.003592371940612793,
2653
+ "rewards/margins": 0.0035784118808805943,
2654
+ "rewards/rejected": 1.3959361240267754e-05,
2655
+ "step": 147
2656
+ },
2657
+ {
2658
+ "epoch": 0.03,
2659
+ "grad_norm": 40.98420333862305,
2660
+ "learning_rate": 5.597579425113464e-08,
2661
+ "logps/chosen": -34.28458786010742,
2662
+ "logps/rejected": -41.45768737792969,
2663
+ "loss": 0.6991,
2664
+ "losses/dpo": 0.6844355463981628,
2665
+ "losses/sft": 1.0345463752746582,
2666
+ "losses/total": 0.6844355463981628,
2667
+ "ref_logps/chosen": -34.26361083984375,
2668
+ "ref_logps/rejected": -41.55308151245117,
2669
+ "rewards/accuracies": 0.375,
2670
+ "rewards/chosen": -0.0020977025851607323,
2671
+ "rewards/margins": -0.01163715124130249,
2672
+ "rewards/rejected": 0.009539449587464333,
2673
+ "step": 148
2674
+ },
2675
+ {
2676
+ "epoch": 0.03,
2677
+ "grad_norm": 32.001407623291016,
2678
+ "learning_rate": 5.6354009077155823e-08,
2679
+ "logps/chosen": -23.2528076171875,
2680
+ "logps/rejected": -28.89508819580078,
2681
+ "loss": 0.6966,
2682
+ "losses/dpo": 0.6931471824645996,
2683
+ "losses/sft": 0.8549447655677795,
2684
+ "losses/total": 0.6931471824645996,
2685
+ "ref_logps/chosen": -23.25066375732422,
2686
+ "ref_logps/rejected": -28.96025848388672,
2687
+ "rewards/accuracies": 0.375,
2688
+ "rewards/chosen": -0.00021452270448207855,
2689
+ "rewards/margins": -0.006731557194143534,
2690
+ "rewards/rejected": 0.006517034024000168,
2691
+ "step": 149
2692
+ },
2693
+ {
2694
+ "epoch": 0.03,
2695
+ "grad_norm": 38.03684616088867,
2696
+ "learning_rate": 5.6732223903177e-08,
2697
+ "logps/chosen": -34.9976692199707,
2698
+ "logps/rejected": -34.524696350097656,
2699
+ "loss": 0.6917,
2700
+ "losses/dpo": 0.6935884356498718,
2701
+ "losses/sft": 1.2651445865631104,
2702
+ "losses/total": 0.6935884356498718,
2703
+ "ref_logps/chosen": -34.93056106567383,
2704
+ "ref_logps/rejected": -34.42768478393555,
2705
+ "rewards/accuracies": 0.625,
2706
+ "rewards/chosen": -0.006710815709084272,
2707
+ "rewards/margins": 0.002990209963172674,
2708
+ "rewards/rejected": -0.009701025672256947,
2709
+ "step": 150
2710
+ }
2711
+ ],
2712
+ "logging_steps": 1.0,
2713
+ "max_steps": 13215,
2714
+ "num_input_tokens_seen": 0,
2715
+ "num_train_epochs": 3,
2716
+ "save_steps": 50,
2717
+ "total_flos": 0.0,
2718
+ "train_batch_size": 1,
2719
+ "trial_name": null,
2720
+ "trial_params": null
2721
+ }
VideoSAVi-Qwen-7B-all-CLIP/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7e56fdac56581473a945a81ece63119f76f91d4ad99edf97676c6c0a3234bde
3
+ size 7864
VideoSAVi-Qwen-7B-all-CLIP/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
VideoSAVi-Qwen-7B-all-CLIP/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)