yogjoshi14 commited on
Commit
3e126e5
·
1 Parent(s): 0d326cb

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b84573ec36090f1194de4dd065abb05349f4b55d55fbe4d3e9683098be3d8256
3
+ size 122924
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ea7838f7010>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7ea7838fcc80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691778955922441157,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfL6UPyw3gL/Fx+49cybQPCiRh78Av+49n/OPP8VgFT8bxu49QQVCvynsib9Yye49lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOTBwPwnQoT+PxCm+BPrbvxq1Xz8k0yQ/9xCFP3GZwj51/4m/SVXKPomFa751/4m/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABMBce9hv6bPRqOVb/WkBtAApSpv8MPCr7fbge/fL6UPyw3gL/Fx+49uOMmvCGEers4KJC8lylEPQGdqTwx/Fc9sK0BvBDrILwl1SA83nhGvl7XPj8cqlW/CRlavyCRhb8nXsS7l+rHP3Mm0DwokYe/AL/uPaxVKLwYVYi7K1mNvEELRT1tmqk8DvxXPeStAbyJ7iC8aj4oPNnOaz47als9jKEQPvPRnL/cJAXACaT2PjbvJD+f848/xWAVPxvG7j07die8PLuAu3vWjbxw5kQ9R3CsPKHFVz2brQG8CR0mvBXmJTy1uUC/oD3DPmSVv75qBwC/4nc0wNxBvD8VIQm/QQVCvynsib9Yye497DgovNYMfrs8EpK8NPNDPYEirTzf01g9IIwbvG5gR7xZtyM8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 1.1620631 -1.0016837 0.11659197]\n [ 0.02540896 -1.0591173 0.11657524]\n [ 1.1246222 0.58350784 0.11658879]\n [-0.75789267 -1.0775195 0.11659497]]",
34
+ "desired_goal": "[[ 0.9382358 1.2641612 -0.16578887]\n [-1.7185674 0.87385714 0.64384675]\n [ 1.0395802 0.38007692 -1.0781084 ]\n [ 0.39518192 -0.23000158 -1.0781084 ]]",
35
+ "observation": "[[-0.09717807 0.07616906 -0.83419955 2.430715 -1.3248293 -0.13482575\n -0.5290355 1.1620631 -1.0016837 0.11659197 -0.01018613 -0.00382257\n -0.0175973 0.04789123 0.02070475 0.05273074 -0.00791495 -0.00982167\n 0.00981644]\n [-0.19382045 0.74547374 -0.8346269 -0.8519445 -1.0434914 -0.00599267\n 1.5618466 0.02540896 -1.0591173 0.11657524 -0.01027433 -0.00416053\n -0.01725443 0.04810644 0.02070352 0.05273061 -0.00791499 -0.0098225\n 0.01026879]\n [ 0.23028125 0.05356811 0.14124125 -1.2251571 -2.0803747 0.48172024\n 0.64427507 1.1246222 0.58350784 0.11658879 -0.01022106 -0.00392857\n -0.01731419 0.04807132 0.02104963 0.05267871 -0.00791493 -0.01013876\n 0.01012566]\n [-0.75283366 0.38132954 -0.37418664 -0.5001131 -2.819817 1.4707599\n -0.53566104 -0.75789267 -1.0775195 0.11659497 -0.01026748 -0.0038765\n -0.01783096 0.04783936 0.02113462 0.05293643 -0.00949386 -0.01216899\n 0.00999244]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2v2HPE5Pkj0K16M8EXrPvcG04LwK16M8WKmMPa0raT0K16M8lwjRPVF1Er4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARS6KPW63xT1LbPI9+zGSPch3mz2ORDU+UZCaPbUADj6JLhw+1eBWvQ5lWj2/dLI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA2v2HPE5Pkj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABF6z73BtOC8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABYqYw9rStpPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAlwjRPVF1Er4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.01660054 0.07144032 0.02 ]\n [-0.10130704 -0.02742994 0.02 ]\n [ 0.06868237 0.05692642 0.02 ]\n [ 0.10206717 -0.14302565 0.02 ]]",
45
+ "desired_goal": "[[ 0.06747106 0.09654127 0.11837061]\n [ 0.07138439 0.07591206 0.17701933]\n [ 0.07547057 0.13867457 0.15252127]\n [-0.05246051 0.05331903 0.02178418]]",
46
+ "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.66005380e-02\n 7.14403242e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.01307042e-01\n -2.74299402e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 6.86823726e-02\n 5.69264181e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.02067165e-01\n -1.43025652e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpDB0lqrR0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpC+GN70FsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpC7rcCYCydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpC/x1xKg7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDUHied08dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDQak690zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDN8KgIyCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDR+melKsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDlZQ53kgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDhm29crzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDfF67dzodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDjnryDqXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpD4bBwdbQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpD0ul41P4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDyF5WzWxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpD1qRMewLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEISsCDEndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEEf6oESvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEB9n003wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEFuIqLCOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEZX3YcvNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEVn27FsIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpETCaqjrSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEXTLGJemdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEq9uxbB5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEnNh/iHZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEkpdrwfAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEoOrZJ05dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpE7q59Vm0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpE38L8aXKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpE1UwrUb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpE4zI/7iydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpE5IcaOxTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFLtMPBi1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFH7e/Ho6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFFY9gWrPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFJ8mjTKDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFiqXnhbXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFfLVWjoIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFddfkWAPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFoMNUfgadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGCRDLKV6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpF+4bCJoCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpF9YNZvDQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGJdbHIZJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGjUgr6LwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGf5mh/RWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGdqtga3rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGh1bqyGBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpG1gQHzH0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGxyNGViXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGvXiBGx2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpG1MOf/WEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHIshX8wYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHE5VfeDWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHCbutwJgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHGC1RceKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHZD4593KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHVRkVerudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHSsewLVndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHb189fTkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHzvcBU70dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHwPHktEodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHuinxaxHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpH3QBPsRhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIPixu89PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIMDg62fDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIKmVZ9uxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIWjK5kLAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpItfqxC6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIpySFGoadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpInlcpsoEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpItBePaL5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpI/3Ilt0ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpI8IRZlnRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpI5xNh3JQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpI+Wki2UjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJRFKTSssdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJNS9VWCFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJK0BwMpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJPwqZtvXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJjtxMnJDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJf96LOzIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJdkWqLjxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJhqnvUjLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJ0/3N9pidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJxP420iRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJuvuogmrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJyugHu7ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKF5nL7oCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKCKL0jC6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJ/hbOeJ6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKDN1yNn5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKWhh6SkkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKSuwX668dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKQZXMhX9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKVQVKwpwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKoQo9cKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKkflQuVYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKiSNfgJkdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5939d352c9773959bf72897357e010f5469d434f3b7e92e94d1155ced8eb8eac
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29a8d66f34b1f5ea66527b5e6dcbc4ed7a208638b49008bf3c204eac1aae38f5
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ea7838f7010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ea7838fcc80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691778955922441157, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfL6UPyw3gL/Fx+49cybQPCiRh78Av+49n/OPP8VgFT8bxu49QQVCvynsib9Yye49lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOTBwPwnQoT+PxCm+BPrbvxq1Xz8k0yQ/9xCFP3GZwj51/4m/SVXKPomFa751/4m/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABMBce9hv6bPRqOVb/WkBtAApSpv8MPCr7fbge/fL6UPyw3gL/Fx+49uOMmvCGEers4KJC8lylEPQGdqTwx/Fc9sK0BvBDrILwl1SA83nhGvl7XPj8cqlW/CRlavyCRhb8nXsS7l+rHP3Mm0DwokYe/AL/uPaxVKLwYVYi7K1mNvEELRT1tmqk8DvxXPeStAbyJ7iC8aj4oPNnOaz47als9jKEQPvPRnL/cJAXACaT2PjbvJD+f848/xWAVPxvG7j07die8PLuAu3vWjbxw5kQ9R3CsPKHFVz2brQG8CR0mvBXmJTy1uUC/oD3DPmSVv75qBwC/4nc0wNxBvD8VIQm/QQVCvynsib9Yye497DgovNYMfrs8EpK8NPNDPYEirTzf01g9IIwbvG5gR7xZtyM8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.1620631 -1.0016837 0.11659197]\n [ 0.02540896 -1.0591173 0.11657524]\n [ 1.1246222 0.58350784 0.11658879]\n [-0.75789267 -1.0775195 0.11659497]]", "desired_goal": "[[ 0.9382358 1.2641612 -0.16578887]\n [-1.7185674 0.87385714 0.64384675]\n [ 1.0395802 0.38007692 -1.0781084 ]\n [ 0.39518192 -0.23000158 -1.0781084 ]]", "observation": "[[-0.09717807 0.07616906 -0.83419955 2.430715 -1.3248293 -0.13482575\n -0.5290355 1.1620631 -1.0016837 0.11659197 -0.01018613 -0.00382257\n -0.0175973 0.04789123 0.02070475 0.05273074 -0.00791495 -0.00982167\n 0.00981644]\n [-0.19382045 0.74547374 -0.8346269 -0.8519445 -1.0434914 -0.00599267\n 1.5618466 0.02540896 -1.0591173 0.11657524 -0.01027433 -0.00416053\n -0.01725443 0.04810644 0.02070352 0.05273061 -0.00791499 -0.0098225\n 0.01026879]\n [ 0.23028125 0.05356811 0.14124125 -1.2251571 -2.0803747 0.48172024\n 0.64427507 1.1246222 0.58350784 0.11658879 -0.01022106 -0.00392857\n -0.01731419 0.04807132 0.02104963 0.05267871 -0.00791493 -0.01013876\n 0.01012566]\n [-0.75283366 0.38132954 -0.37418664 -0.5001131 -2.819817 1.4707599\n -0.53566104 -0.75789267 -1.0775195 0.11659497 -0.01026748 -0.0038765\n -0.01783096 0.04783936 0.02113462 0.05293643 -0.00949386 -0.01216899\n 0.00999244]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2v2HPE5Pkj0K16M8EXrPvcG04LwK16M8WKmMPa0raT0K16M8lwjRPVF1Er4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARS6KPW63xT1LbPI9+zGSPch3mz2ORDU+UZCaPbUADj6JLhw+1eBWvQ5lWj2/dLI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA2v2HPE5Pkj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABF6z73BtOC8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAABYqYw9rStpPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAlwjRPVF1Er4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.01660054 0.07144032 0.02 ]\n [-0.10130704 -0.02742994 0.02 ]\n [ 0.06868237 0.05692642 0.02 ]\n [ 0.10206717 -0.14302565 0.02 ]]", "desired_goal": "[[ 0.06747106 0.09654127 0.11837061]\n [ 0.07138439 0.07591206 0.17701933]\n [ 0.07547057 0.13867457 0.15252127]\n [-0.05246051 0.05331903 0.02178418]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.66005380e-02\n 7.14403242e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.01307042e-01\n -2.74299402e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 6.86823726e-02\n 5.69264181e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.02067165e-01\n -1.43025652e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpDB0lqrR0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpC+GN70FsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpC7rcCYCydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpC/x1xKg7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDUHied08dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDQak690zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDN8KgIyCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDR+melKsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDlZQ53kgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDhm29crzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDfF67dzodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDjnryDqXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpD4bBwdbQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpD0ul41P4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpDyF5WzWxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpD1qRMewLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEISsCDEndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEEf6oESvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEB9n003wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEFuIqLCOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEZX3YcvNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEVn27FsIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpETCaqjrSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEXTLGJemdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEq9uxbB5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEnNh/iHZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEkpdrwfAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpEoOrZJ05dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpE7q59Vm0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpE38L8aXKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpE1UwrUb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpE4zI/7iydX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpE5IcaOxTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFLtMPBi1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFH7e/Ho6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFFY9gWrPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFJ8mjTKDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFiqXnhbXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFfLVWjoIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFddfkWAPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpFoMNUfgadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGCRDLKV6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpF+4bCJoCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpF9YNZvDQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGJdbHIZJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGjUgr6LwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGf5mh/RWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGdqtga3rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGh1bqyGBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpG1gQHzH0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGxyNGViXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpGvXiBGx2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpG1MOf/WEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHIshX8wYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHE5VfeDWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHCbutwJgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHGC1RceKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHZD4593KdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHVRkVerudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHSsewLVndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHb189fTkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHzvcBU70dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHwPHktEodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpHuinxaxHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpH3QBPsRhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIPixu89PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIMDg62fDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIKmVZ9uxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIWjK5kLAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpItfqxC6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpIpySFGoadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpInlcpsoEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpItBePaL5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpI/3Ilt0ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpI8IRZlnRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpI5xNh3JQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpI+Wki2UjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJRFKTSssdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJNS9VWCFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJK0BwMpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJPwqZtvXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJjtxMnJDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJf96LOzIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJdkWqLjxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJhqnvUjLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJ0/3N9pidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJxP420iRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJuvuogmrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJyugHu7ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKF5nL7oCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKCKL0jC6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpJ/hbOeJ6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKDN1yNn5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKWhh6SkkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKSuwX668dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKQZXMhX9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKVQVKwpwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKoQo9cKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKkflQuVYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpKiSNfgJkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (857 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-11T19:29:41.463031"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7575cef0e21502852c96c1ae64bc367d140a6740f1e5d84ea3820d6fddc3fd33
3
+ size 3013