ykirpichev
commited on
Commit
•
e573f52
1
Parent(s):
bfc3fd2
My first commit to ykirpichev/PPO-LunarLander-v2
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 211.45 +/- 16.52
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e4cddc9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e4cddca70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e4cddcb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e4cddcb90>", "_build": "<function ActorCriticPolicy._build at 0x7f7e4cddcc20>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e4cddccb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e4cddcd40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e4cddcdd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e4cddce60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e4cddcef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e4cddcf80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7e4ce1fcc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651943971.1546283, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIASNr2fUck8et3uvZYkTb7nvjq9a3HWvQAAAAAAAAAA82pAPp9dkT9P15U+oNWhvn9sbj5M9II9AAAAAAAAAADACbI9j74euisHKjomLSU1FsopuWd0RLkAAIA/AACAP803Wz1cG066VhyKvI/purUeyVG7M6UoNQAAgD8AAIA/GsfGPa5biLpbclM4QOSuMwui/TqGBHO3AACAPwAAgD+aotq8rhuGunN6k7ve/RWzCHUhu0mYqDoAAIA/AACAP+aDGD32SHi6/OyUOy1Q8DYxxxO7KmmsugAAgD8AAIA/ZqjmPFxzKbo2yQQ7vTYvteBUJbkWFSe0AACAPwAAgD+AIZs9KTQQukCr/jkEn5o1HOAGOxzlErkAAIA/AACAP5pHy7yPnju67m6HuWW4ZbZCICU6M4iaOAAAgD8AAIA/zQbKPI8WQrr4FFu8Z++htkuNkTr6HhQ2AACAPwAAgD/NTFi8/PeOP5OWILyircq++ceJvW7uaD0AAAAAAAAAAIBOLT1oea0/ep0CP2PYnL6Dl6O8ehSNvAAAAAAAAAAAc9CDPVKI3Ll2gfm7VcRCtrbmC7tK5rE1AACAPwAAgD8zoYE8ro2Pun0GZbsaZoC2WNiDOrPZ5TUAAIA/AACAP82mWjwrWI091gA1vj16Eb6ivoS9ZQsivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIuAQqlSTYUCUhpRSlIwBbJRN6AOMAXSUR0CGEu8L8aXKdX2UKGgGaAloD0MIDJV/La/9WECUhpRSlGgVTegDaBZHQIYTxcRlHz91fZQoaAZoCWgPQwj8jAsHwoxgQJSGlFKUaBVN6ANoFkdAhhsw8nuy/3V9lChoBmgJaA9DCMrAAS1daT1AlIaUUpRoFUvBaBZHQIYfZ79hqj91fZQoaAZoCWgPQwiwko/dBeFdQJSGlFKUaBVN6ANoFkdAhiN9HlOoHnV9lChoBmgJaA9DCC5x5IHIQgfAlIaUUpRoFUvkaBZHQIYtgW+GoJl1fZQoaAZoCWgPQwgJxsGlY14uQJSGlFKUaBVLvWgWR0CGNoCbMHKPdX2UKGgGaAloD0MI/pyC/GzFWECUhpRSlGgVTegDaBZHQIZdU/lhgE51fZQoaAZoCWgPQwih2XVvRV5kQJSGlFKUaBVN6ANoFkdAhmF2J79hqnV9lChoBmgJaA9DCPSI0XOLn2FAlIaUUpRoFU3oA2gWR0CGZhCgK4QSdX2UKGgGaAloD0MItRmnIarCWkCUhpRSlGgVTegDaBZHQIZq47gbZOB1fZQoaAZoCWgPQwgoLVxWYWddQJSGlFKUaBVN6ANoFkdAhnBdZaFEiXV9lChoBmgJaA9DCAcMkj6tairAlIaUUpRoFUvhaBZHQIZ00UuctoV1fZQoaAZoCWgPQwjIX1rUJ6lCQJSGlFKUaBVLrmgWR0CGdOrxy4nXdX2UKGgGaAloD0MI8+fbgqW0VUCUhpRSlGgVTegDaBZHQIZ8DItDlYF1fZQoaAZoCWgPQwiRXz/EBisowJSGlFKUaBVLyGgWR0CGhkK4x1xLdX2UKGgGaAloD0MISGx3D9DrXUCUhpRSlGgVTegDaBZHQIaLE5wOvuB1fZQoaAZoCWgPQwhlwi/18xphQJSGlFKUaBVN6ANoFkdAho5o/JNj9XV9lChoBmgJaA9DCIld29stiRtAlIaUUpRoFUv7aBZHQIaa1cGC7K91fZQoaAZoCWgPQwgXKv9aXpkZwJSGlFKUaBVLrmgWR0CGnH9wWFewdX2UKGgGaAloD0MIFqJD4MhNYECUhpRSlGgVTegDaBZHQIanbtsvZh91fZQoaAZoCWgPQwh5dCMsKuZYQJSGlFKUaBVN6ANoFkdAhqeP5HmRvHV9lChoBmgJaA9DCD9ya9JtImFAlIaUUpRoFU3oA2gWR0CGrVuuRs/IdX2UKGgGaAloD0MIem02VmLiYECUhpRSlGgVTegDaBZHQIawuaWom5V1fZQoaAZoCWgPQwi/nq9ZLpxTQJSGlFKUaBVN6ANoFkdAhrhTOgQHzHV9lChoBmgJaA9DCHmRCfg1g2RAlIaUUpRoFU3oA2gWR0CGwNCuU2UCdX2UKGgGaAloD0MIk1SmmANKZUCUhpRSlGgVTegDaBZHQIbLR5X2dup1fZQoaAZoCWgPQwgNxLKZw7xgQJSGlFKUaBVN6ANoFkdAhtb3EIgNgHV9lChoBmgJaA9DCGAGY0SiI2BAlIaUUpRoFU3oA2gWR0CHBIEjgQ6IdX2UKGgGaAloD0MIG9oAbECpWkCUhpRSlGgVTegDaBZHQIcJz+T/yXl1fZQoaAZoCWgPQwhuowG8BRxYQJSGlFKUaBVN6ANoFkdAhxSAlv60pnV9lChoBmgJaA9DCNsUj4vqcWJAlIaUUpRoFU3oA2gWR0CHFJ3L3bmEdX2UKGgGaAloD0MISKeufJZHHsCUhpRSlGgVS99oFkdAhxZCXY150XV9lChoBmgJaA9DCIYb8PlhEmNAlIaUUpRoFU3oA2gWR0CHKhojfNzKdX2UKGgGaAloD0MI4bchxusiZECUhpRSlGgVTegDaBZHQIctXJiiItV1fZQoaAZoCWgPQwhF1hpK7QUvQJSGlFKUaBVL6mgWR0CHMKrz5GjLdX2UKGgGaAloD0MI/nvw2iV5YECUhpRSlGgVTegDaBZHQIc4y7oSteV1fZQoaAZoCWgPQwhnt5bJ8ApiQJSGlFKUaBVN6ANoFkdAhzopeNT99HV9lChoBmgJaA9DCMOedvhrNGJAlIaUUpRoFU3oA2gWR0CHQybz9S/CdX2UKGgGaAloD0MI1sdD3906WkCUhpRSlGgVTegDaBZHQIdDQ0fozN51fZQoaAZoCWgPQwjk+KHSiABjQJSGlFKUaBVN6ANoFkdAh0fwEpy6tnV9lChoBmgJaA9DCMy4qYHmJ15AlIaUUpRoFU3oA2gWR0CHSsHE/B3zdX2UKGgGaAloD0MIzO1e7pPVWUCUhpRSlGgVTegDaBZHQIdR18w5/9Z1fZQoaAZoCWgPQwhTPC6qRYFeQJSGlFKUaBVN6ANoFkdAh1mpMpPRA3V9lChoBmgJaA9DCDs42JsYnmBAlIaUUpRoFU3oA2gWR0CHY6pPRArydX2UKGgGaAloD0MIBFq6gu1vYkCUhpRSlGgVTegDaBZHQIebhqh11W91fZQoaAZoCWgPQwiqY5XSM0lEQJSGlFKUaBVNFwFoFkdAh5/dtl7MPnV9lChoBmgJaA9DCGNjXkecH2JAlIaUUpRoFU3oA2gWR0CHoM9JSR8udX2UKGgGaAloD0MIqYO8HkzCYUCUhpRSlGgVTegDaBZHQIerzRlYlpp1fZQoaAZoCWgPQwjcniCxXTVhQJSGlFKUaBVN6ANoFkdAh6vsKb8WK3V9lChoBmgJaA9DCBIykGeXOFxAlIaUUpRoFU3oA2gWR0CHw5/aQFLWdX2UKGgGaAloD0MIGJY/3xY2XECUhpRSlGgVTegDaBZHQIfHYSrYGt91fZQoaAZoCWgPQwg4Ef3a+ghXQJSGlFKUaBVN6ANoFkdAh8sUrK/203V9lChoBmgJaA9DCGWlSSloUmNAlIaUUpRoFU3oA2gWR0CH09mfXf65dX2UKGgGaAloD0MIr7SM1HsGYECUhpRSlGgVTegDaBZHQIfVYxDb8FZ1fZQoaAZoCWgPQwjG3SBaK6FfQJSGlFKUaBVN6ANoFkdAh98269TP0XV9lChoBmgJaA9DCCZRL/g0pmJAlIaUUpRoFU3oA2gWR0CH31iADq4ZdX2UKGgGaAloD0MIVMcqpWd64D+UhpRSlGgVS+BoFkdAh+BD+zdDY3V9lChoBmgJaA9DCG2QSUbOAEJAlIaUUpRoFUvSaBZHQIfhuE4//vR1fZQoaAZoCWgPQwi3YKkuYLRlQJSGlFKUaBVN6ANoFkdAh+SII4VARnV9lChoBmgJaA9DCDUlWYcjFWJAlIaUUpRoFU3oA2gWR0CH52mLtNSJdX2UKGgGaAloD0MImPc404Q6X0CUhpRSlGgVTegDaBZHQIft7KLbYbt1fZQoaAZoCWgPQwhvufqxSQYhQJSGlFKUaBVLj2gWR0CH9ev2Xb/PdX2UKGgGaAloD0MIJov7j0zDMsCUhpRSlGgVS/toFkdAh/mZHmRvFXV9lChoBmgJaA9DCDPBcK5hh15AlIaUUpRoFU3oA2gWR0CH/pnU2DQJdX2UKGgGaAloD0MIRRMoYpHaY0CUhpRSlGgVTegDaBZHQIg1igPEsJ91fZQoaAZoCWgPQwhEhlW8kUkhQJSGlFKUaBVLqWgWR0CINq7FKkEcdX2UKGgGaAloD0MI6IcRwqOxXECUhpRSlGgVTegDaBZHQIg5lndweeZ1fZQoaAZoCWgPQwgQlUbMbPRgQJSGlFKUaBVN6ANoFkdAiDpxIz3yqnV9lChoBmgJaA9DCDscXaW7EGBAlIaUUpRoFU3oA2gWR0CIRGaKDTScdX2UKGgGaAloD0MIfc1y2ejgYkCUhpRSlGgVTegDaBZHQIhEg/X5FgF1fZQoaAZoCWgPQwgrFr8pLG5hQJSGlFKUaBVN6ANoFkdAiF64ecQRPHV9lChoBmgJaA9DCF9GsdzStmFAlIaUUpRoFU3oA2gWR0CIZroXbdrPdX2UKGgGaAloD0MIJZLoZRQpX0CUhpRSlGgVTegDaBZHQIhoEBltj1B1fZQoaAZoCWgPQwh6q65DtWdjQJSGlFKUaBVN6ANoFkdAiHCxvegte3V9lChoBmgJaA9DCPmekQiN41dAlIaUUpRoFU3oA2gWR0CIccZnctXgdX2UKGgGaAloD0MI3GYqxCOmX0CUhpRSlGgVTegDaBZHQIhzGFJxvNx1fZQoaAZoCWgPQwhz9s5oqx5hQJSGlFKUaBVN6ANoFkdAiHV3cgyM1nV9lChoBmgJaA9DCHkj88gfJ2BAlIaUUpRoFU3oA2gWR0CIfj44ZMtcdX2UKGgGaAloD0MI5pE/GHjMZUCUhpRSlGgVTegDaBZHQIiGikEcKgJ1fZQoaAZoCWgPQwi14EVfQYBfQJSGlFKUaBVN6ANoFkdAiIpRZU1hs3V9lChoBmgJaA9DCM6mI4Cb1lpAlIaUUpRoFU3oA2gWR0CIo/oqTbFkdX2UKGgGaAloD0MI6PS8GwsLY0CUhpRSlGgVTegDaBZHQIilTOLR8dB1fZQoaAZoCWgPQwjzOXe7XhBlQJSGlFKUaBVN6ANoFkdAiMyuuaF23nV9lChoBmgJaA9DCLdj6q5sE2RAlIaUUpRoFU3oA2gWR0CIzbBgNPP+dX2UKGgGaAloD0MIcXSV7i7fZECUhpRSlGgVTegDaBZHQIjZGBnSOR11fZQoaAZoCWgPQwhJFFrW/VhfQJSGlFKUaBVN6ANoFkdAiNk3S0BwM3V9lChoBmgJaA9DCOBNt+wQSWJAlIaUUpRoFU3oA2gWR0CI+fYKYzBRdX2UKGgGaAloD0MILCy4H/ClW0CUhpRSlGgVTegDaBZHQIkEAKc/dIp1fZQoaAZoCWgPQwh6VWe1wO9jQJSGlFKUaBVN6ANoFkdAiQWyDRMN+nV9lChoBmgJaA9DCISezarP2GFAlIaUUpRoFU3oA2gWR0CJEFAAQxvfdX2UKGgGaAloD0MI+boM/+nIW0CUhpRSlGgVTegDaBZHQIkRelCTlkp1fZQoaAZoCWgPQwgjv36IjXNhQJSGlFKUaBVN6ANoFkdAiRMT5O8CgnV9lChoBmgJaA9DCBYUBmWaTmZAlIaUUpRoFU3oA2gWR0CJFkNvOyE+dX2UKGgGaAloD0MIOGvwvio9YUCUhpRSlGgVTegDaBZHQIkhht52Qnx1fZQoaAZoCWgPQwhywRn8/SlbQJSGlFKUaBVN6ANoFkdAiSsLc9GI9HV9lChoBmgJaA9DCP+xEB0Cf2VAlIaUUpRoFU3oA2gWR0CJLyzMRpUQdX2UKGgGaAloD0MILXk8LT9xZECUhpRSlGgVTegDaBZHQIlJ0idJ8OV1fZQoaAZoCWgPQwjbMuAspZtjQJSGlFKUaBVN6ANoFkdAiUsZIpYs/nV9lChoBmgJaA9DCG5S0Vj7KWVAlIaUUpRoFU3oA2gWR0CJTqE7GNrCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0df19d2c7bd60d6831cc56092c832c63c71bee40d2094698ad27d743a51d5800
|
3 |
+
size 144028
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e4cddc9e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e4cddca70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e4cddcb00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e4cddcb90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7e4cddcc20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7e4cddccb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e4cddcd40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7e4cddcdd0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e4cddce60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e4cddcef0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e4cddcf80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7e4ce1fcc0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651943971.1546283,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIASNr2fUck8et3uvZYkTb7nvjq9a3HWvQAAAAAAAAAA82pAPp9dkT9P15U+oNWhvn9sbj5M9II9AAAAAAAAAADACbI9j74euisHKjomLSU1FsopuWd0RLkAAIA/AACAP803Wz1cG066VhyKvI/purUeyVG7M6UoNQAAgD8AAIA/GsfGPa5biLpbclM4QOSuMwui/TqGBHO3AACAPwAAgD+aotq8rhuGunN6k7ve/RWzCHUhu0mYqDoAAIA/AACAP+aDGD32SHi6/OyUOy1Q8DYxxxO7KmmsugAAgD8AAIA/ZqjmPFxzKbo2yQQ7vTYvteBUJbkWFSe0AACAPwAAgD+AIZs9KTQQukCr/jkEn5o1HOAGOxzlErkAAIA/AACAP5pHy7yPnju67m6HuWW4ZbZCICU6M4iaOAAAgD8AAIA/zQbKPI8WQrr4FFu8Z++htkuNkTr6HhQ2AACAPwAAgD/NTFi8/PeOP5OWILyircq++ceJvW7uaD0AAAAAAAAAAIBOLT1oea0/ep0CP2PYnL6Dl6O8ehSNvAAAAAAAAAAAc9CDPVKI3Ll2gfm7VcRCtrbmC7tK5rE1AACAPwAAgD8zoYE8ro2Pun0GZbsaZoC2WNiDOrPZ5TUAAIA/AACAP82mWjwrWI091gA1vj16Eb6ivoS9ZQsivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIuAQqlSTYUCUhpRSlIwBbJRN6AOMAXSUR0CGEu8L8aXKdX2UKGgGaAloD0MIDJV/La/9WECUhpRSlGgVTegDaBZHQIYTxcRlHz91fZQoaAZoCWgPQwj8jAsHwoxgQJSGlFKUaBVN6ANoFkdAhhsw8nuy/3V9lChoBmgJaA9DCMrAAS1daT1AlIaUUpRoFUvBaBZHQIYfZ79hqj91fZQoaAZoCWgPQwiwko/dBeFdQJSGlFKUaBVN6ANoFkdAhiN9HlOoHnV9lChoBmgJaA9DCC5x5IHIQgfAlIaUUpRoFUvkaBZHQIYtgW+GoJl1fZQoaAZoCWgPQwgJxsGlY14uQJSGlFKUaBVLvWgWR0CGNoCbMHKPdX2UKGgGaAloD0MI/pyC/GzFWECUhpRSlGgVTegDaBZHQIZdU/lhgE51fZQoaAZoCWgPQwih2XVvRV5kQJSGlFKUaBVN6ANoFkdAhmF2J79hqnV9lChoBmgJaA9DCPSI0XOLn2FAlIaUUpRoFU3oA2gWR0CGZhCgK4QSdX2UKGgGaAloD0MItRmnIarCWkCUhpRSlGgVTegDaBZHQIZq47gbZOB1fZQoaAZoCWgPQwgoLVxWYWddQJSGlFKUaBVN6ANoFkdAhnBdZaFEiXV9lChoBmgJaA9DCAcMkj6tairAlIaUUpRoFUvhaBZHQIZ00UuctoV1fZQoaAZoCWgPQwjIX1rUJ6lCQJSGlFKUaBVLrmgWR0CGdOrxy4nXdX2UKGgGaAloD0MI8+fbgqW0VUCUhpRSlGgVTegDaBZHQIZ8DItDlYF1fZQoaAZoCWgPQwiRXz/EBisowJSGlFKUaBVLyGgWR0CGhkK4x1xLdX2UKGgGaAloD0MISGx3D9DrXUCUhpRSlGgVTegDaBZHQIaLE5wOvuB1fZQoaAZoCWgPQwhlwi/18xphQJSGlFKUaBVN6ANoFkdAho5o/JNj9XV9lChoBmgJaA9DCIld29stiRtAlIaUUpRoFUv7aBZHQIaa1cGC7K91fZQoaAZoCWgPQwgXKv9aXpkZwJSGlFKUaBVLrmgWR0CGnH9wWFewdX2UKGgGaAloD0MIFqJD4MhNYECUhpRSlGgVTegDaBZHQIanbtsvZh91fZQoaAZoCWgPQwh5dCMsKuZYQJSGlFKUaBVN6ANoFkdAhqeP5HmRvHV9lChoBmgJaA9DCD9ya9JtImFAlIaUUpRoFU3oA2gWR0CGrVuuRs/IdX2UKGgGaAloD0MIem02VmLiYECUhpRSlGgVTegDaBZHQIawuaWom5V1fZQoaAZoCWgPQwi/nq9ZLpxTQJSGlFKUaBVN6ANoFkdAhrhTOgQHzHV9lChoBmgJaA9DCHmRCfg1g2RAlIaUUpRoFU3oA2gWR0CGwNCuU2UCdX2UKGgGaAloD0MIk1SmmANKZUCUhpRSlGgVTegDaBZHQIbLR5X2dup1fZQoaAZoCWgPQwgNxLKZw7xgQJSGlFKUaBVN6ANoFkdAhtb3EIgNgHV9lChoBmgJaA9DCGAGY0SiI2BAlIaUUpRoFU3oA2gWR0CHBIEjgQ6IdX2UKGgGaAloD0MIG9oAbECpWkCUhpRSlGgVTegDaBZHQIcJz+T/yXl1fZQoaAZoCWgPQwhuowG8BRxYQJSGlFKUaBVN6ANoFkdAhxSAlv60pnV9lChoBmgJaA9DCNsUj4vqcWJAlIaUUpRoFU3oA2gWR0CHFJ3L3bmEdX2UKGgGaAloD0MISKeufJZHHsCUhpRSlGgVS99oFkdAhxZCXY150XV9lChoBmgJaA9DCIYb8PlhEmNAlIaUUpRoFU3oA2gWR0CHKhojfNzKdX2UKGgGaAloD0MI4bchxusiZECUhpRSlGgVTegDaBZHQIctXJiiItV1fZQoaAZoCWgPQwhF1hpK7QUvQJSGlFKUaBVL6mgWR0CHMKrz5GjLdX2UKGgGaAloD0MI/nvw2iV5YECUhpRSlGgVTegDaBZHQIc4y7oSteV1fZQoaAZoCWgPQwhnt5bJ8ApiQJSGlFKUaBVN6ANoFkdAhzopeNT99HV9lChoBmgJaA9DCMOedvhrNGJAlIaUUpRoFU3oA2gWR0CHQybz9S/CdX2UKGgGaAloD0MI1sdD3906WkCUhpRSlGgVTegDaBZHQIdDQ0fozN51fZQoaAZoCWgPQwjk+KHSiABjQJSGlFKUaBVN6ANoFkdAh0fwEpy6tnV9lChoBmgJaA9DCMy4qYHmJ15AlIaUUpRoFU3oA2gWR0CHSsHE/B3zdX2UKGgGaAloD0MIzO1e7pPVWUCUhpRSlGgVTegDaBZHQIdR18w5/9Z1fZQoaAZoCWgPQwhTPC6qRYFeQJSGlFKUaBVN6ANoFkdAh1mpMpPRA3V9lChoBmgJaA9DCDs42JsYnmBAlIaUUpRoFU3oA2gWR0CHY6pPRArydX2UKGgGaAloD0MIBFq6gu1vYkCUhpRSlGgVTegDaBZHQIebhqh11W91fZQoaAZoCWgPQwiqY5XSM0lEQJSGlFKUaBVNFwFoFkdAh5/dtl7MPnV9lChoBmgJaA9DCGNjXkecH2JAlIaUUpRoFU3oA2gWR0CHoM9JSR8udX2UKGgGaAloD0MIqYO8HkzCYUCUhpRSlGgVTegDaBZHQIerzRlYlpp1fZQoaAZoCWgPQwjcniCxXTVhQJSGlFKUaBVN6ANoFkdAh6vsKb8WK3V9lChoBmgJaA9DCBIykGeXOFxAlIaUUpRoFU3oA2gWR0CHw5/aQFLWdX2UKGgGaAloD0MIGJY/3xY2XECUhpRSlGgVTegDaBZHQIfHYSrYGt91fZQoaAZoCWgPQwg4Ef3a+ghXQJSGlFKUaBVN6ANoFkdAh8sUrK/203V9lChoBmgJaA9DCGWlSSloUmNAlIaUUpRoFU3oA2gWR0CH09mfXf65dX2UKGgGaAloD0MIr7SM1HsGYECUhpRSlGgVTegDaBZHQIfVYxDb8FZ1fZQoaAZoCWgPQwjG3SBaK6FfQJSGlFKUaBVN6ANoFkdAh98269TP0XV9lChoBmgJaA9DCCZRL/g0pmJAlIaUUpRoFU3oA2gWR0CH31iADq4ZdX2UKGgGaAloD0MIVMcqpWd64D+UhpRSlGgVS+BoFkdAh+BD+zdDY3V9lChoBmgJaA9DCG2QSUbOAEJAlIaUUpRoFUvSaBZHQIfhuE4//vR1fZQoaAZoCWgPQwi3YKkuYLRlQJSGlFKUaBVN6ANoFkdAh+SII4VARnV9lChoBmgJaA9DCDUlWYcjFWJAlIaUUpRoFU3oA2gWR0CH52mLtNSJdX2UKGgGaAloD0MImPc404Q6X0CUhpRSlGgVTegDaBZHQIft7KLbYbt1fZQoaAZoCWgPQwhvufqxSQYhQJSGlFKUaBVLj2gWR0CH9ev2Xb/PdX2UKGgGaAloD0MIJov7j0zDMsCUhpRSlGgVS/toFkdAh/mZHmRvFXV9lChoBmgJaA9DCDPBcK5hh15AlIaUUpRoFU3oA2gWR0CH/pnU2DQJdX2UKGgGaAloD0MIRRMoYpHaY0CUhpRSlGgVTegDaBZHQIg1igPEsJ91fZQoaAZoCWgPQwhEhlW8kUkhQJSGlFKUaBVLqWgWR0CINq7FKkEcdX2UKGgGaAloD0MI6IcRwqOxXECUhpRSlGgVTegDaBZHQIg5lndweeZ1fZQoaAZoCWgPQwgQlUbMbPRgQJSGlFKUaBVN6ANoFkdAiDpxIz3yqnV9lChoBmgJaA9DCDscXaW7EGBAlIaUUpRoFU3oA2gWR0CIRGaKDTScdX2UKGgGaAloD0MIfc1y2ejgYkCUhpRSlGgVTegDaBZHQIhEg/X5FgF1fZQoaAZoCWgPQwgrFr8pLG5hQJSGlFKUaBVN6ANoFkdAiF64ecQRPHV9lChoBmgJaA9DCF9GsdzStmFAlIaUUpRoFU3oA2gWR0CIZroXbdrPdX2UKGgGaAloD0MIJZLoZRQpX0CUhpRSlGgVTegDaBZHQIhoEBltj1B1fZQoaAZoCWgPQwh6q65DtWdjQJSGlFKUaBVN6ANoFkdAiHCxvegte3V9lChoBmgJaA9DCPmekQiN41dAlIaUUpRoFU3oA2gWR0CIccZnctXgdX2UKGgGaAloD0MI3GYqxCOmX0CUhpRSlGgVTegDaBZHQIhzGFJxvNx1fZQoaAZoCWgPQwhz9s5oqx5hQJSGlFKUaBVN6ANoFkdAiHV3cgyM1nV9lChoBmgJaA9DCHkj88gfJ2BAlIaUUpRoFU3oA2gWR0CIfj44ZMtcdX2UKGgGaAloD0MI5pE/GHjMZUCUhpRSlGgVTegDaBZHQIiGikEcKgJ1fZQoaAZoCWgPQwi14EVfQYBfQJSGlFKUaBVN6ANoFkdAiIpRZU1hs3V9lChoBmgJaA9DCM6mI4Cb1lpAlIaUUpRoFU3oA2gWR0CIo/oqTbFkdX2UKGgGaAloD0MI6PS8GwsLY0CUhpRSlGgVTegDaBZHQIilTOLR8dB1fZQoaAZoCWgPQwjzOXe7XhBlQJSGlFKUaBVN6ANoFkdAiMyuuaF23nV9lChoBmgJaA9DCLdj6q5sE2RAlIaUUpRoFU3oA2gWR0CIzbBgNPP+dX2UKGgGaAloD0MIcXSV7i7fZECUhpRSlGgVTegDaBZHQIjZGBnSOR11fZQoaAZoCWgPQwhJFFrW/VhfQJSGlFKUaBVN6ANoFkdAiNk3S0BwM3V9lChoBmgJaA9DCOBNt+wQSWJAlIaUUpRoFU3oA2gWR0CI+fYKYzBRdX2UKGgGaAloD0MILCy4H/ClW0CUhpRSlGgVTegDaBZHQIkEAKc/dIp1fZQoaAZoCWgPQwh6VWe1wO9jQJSGlFKUaBVN6ANoFkdAiQWyDRMN+nV9lChoBmgJaA9DCISezarP2GFAlIaUUpRoFU3oA2gWR0CJEFAAQxvfdX2UKGgGaAloD0MI+boM/+nIW0CUhpRSlGgVTegDaBZHQIkRelCTlkp1fZQoaAZoCWgPQwgjv36IjXNhQJSGlFKUaBVN6ANoFkdAiRMT5O8CgnV9lChoBmgJaA9DCBYUBmWaTmZAlIaUUpRoFU3oA2gWR0CJFkNvOyE+dX2UKGgGaAloD0MIOGvwvio9YUCUhpRSlGgVTegDaBZHQIkhht52Qnx1fZQoaAZoCWgPQwhywRn8/SlbQJSGlFKUaBVN6ANoFkdAiSsLc9GI9HV9lChoBmgJaA9DCP+xEB0Cf2VAlIaUUpRoFU3oA2gWR0CJLyzMRpUQdX2UKGgGaAloD0MILXk8LT9xZECUhpRSlGgVTegDaBZHQIlJ0idJ8OV1fZQoaAZoCWgPQwjbMuAspZtjQJSGlFKUaBVN6ANoFkdAiUsZIpYs/nV9lChoBmgJaA9DCG5S0Vj7KWVAlIaUUpRoFU3oA2gWR0CJTqE7GNrCdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4059232ad2f8c010019f3d98afd93e786cffaecd909029e1f12036fad9f8698
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c40ff604594f477efe5f7eb15a7659c1d1d88b274e7f8c2f3e8235b324f951
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:154d90657ebd48d318aa4338248d399df8be8d87b71a8d06d577500e4a0a3dbb
|
3 |
+
size 247636
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 211.4538743098824, "std_reward": 16.518886177093403, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T17:36:40.462564"}
|