|
""" |
|
This code started out as a PyTorch port of Ho et al's diffusion models: |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py |
|
|
|
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. |
|
""" |
|
|
|
import enum |
|
import os |
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch as th |
|
|
|
from .nn import mean_flat |
|
from .losses import normal_kl, discretized_gaussian_log_likelihood |
|
from .midi_util import save_piano_roll_midi |
|
from music_rule_guidance.rule_maps import FUNC_DICT, LOSS_DICT |
|
from collections import defaultdict |
|
import torch.nn.functional as F |
|
import multiprocessing |
|
from functools import partial |
|
|
|
import matplotlib.pyplot as plt |
|
plt.rcParams["figure.figsize"] = (20, 3) |
|
plt.rcParams['figure.dpi'] = 300 |
|
plt.rcParams['savefig.dpi'] = 300 |
|
|
|
|
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): |
|
""" |
|
Get a pre-defined beta schedule for the given name. |
|
|
|
The beta schedule library consists of beta schedules which remain similar |
|
in the limit of num_diffusion_timesteps. |
|
Beta schedules may be added, but should not be removed or changed once |
|
they are committed to maintain backwards compatibility. |
|
""" |
|
if schedule_name == "linear": |
|
|
|
|
|
scale = 1000 / num_diffusion_timesteps |
|
beta_start = scale * 0.0001 |
|
beta_end = scale * 0.02 |
|
return np.linspace( |
|
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 |
|
) |
|
elif schedule_name == "cosine": |
|
return betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, |
|
) |
|
elif schedule_name == 'stable-diffusion': |
|
scale = 1000 / num_diffusion_timesteps |
|
beta_start = scale * math.sqrt(0.00085) |
|
beta_end = scale * math.sqrt(0.012) |
|
return np.linspace( |
|
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 |
|
) ** 2 |
|
else: |
|
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, |
|
which defines the cumulative product of (1-beta) over time from t = [0,1]. |
|
|
|
:param num_diffusion_timesteps: the number of betas to produce. |
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and |
|
produces the cumulative product of (1-beta) up to that |
|
part of the diffusion process. |
|
:param max_beta: the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
""" |
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return np.array(betas) |
|
|
|
|
|
class ModelMeanType(enum.Enum): |
|
""" |
|
Which type of output the model predicts. |
|
""" |
|
|
|
PREVIOUS_X = enum.auto() |
|
START_X = enum.auto() |
|
EPSILON = enum.auto() |
|
|
|
|
|
class ModelVarType(enum.Enum): |
|
""" |
|
What is used as the model's output variance. |
|
|
|
The LEARNED_RANGE option has been added to allow the model to predict |
|
values between FIXED_SMALL and FIXED_LARGE, making its job easier. |
|
""" |
|
|
|
LEARNED = enum.auto() |
|
FIXED_SMALL = enum.auto() |
|
FIXED_LARGE = enum.auto() |
|
LEARNED_RANGE = enum.auto() |
|
|
|
|
|
class LossType(enum.Enum): |
|
MSE = enum.auto() |
|
RESCALED_MSE = ( |
|
enum.auto() |
|
) |
|
KL = enum.auto() |
|
RESCALED_KL = enum.auto() |
|
|
|
def is_vb(self): |
|
return self == LossType.KL or self == LossType.RESCALED_KL |
|
|
|
|
|
class GaussianDiffusion: |
|
""" |
|
Utilities for training and sampling diffusion models. |
|
|
|
Ported directly from here, and then adapted over time to further experimentation. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 |
|
|
|
:param betas: a 1-D numpy array of betas for each diffusion timestep, |
|
starting at T and going to 1. |
|
:param model_mean_type: a ModelMeanType determining what the model outputs. |
|
:param model_var_type: a ModelVarType determining how variance is output. |
|
:param loss_type: a LossType determining the loss function to use. |
|
:param rescale_timesteps: if True, pass floating point timesteps into the |
|
model so that they are always scaled like in the |
|
original paper (0 to 1000). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
betas, |
|
model_mean_type, |
|
model_var_type, |
|
loss_type, |
|
rescale_timesteps=False, |
|
): |
|
self.model_mean_type = model_mean_type |
|
self.model_var_type = model_var_type |
|
self.loss_type = loss_type |
|
self.rescale_timesteps = rescale_timesteps |
|
|
|
|
|
betas = np.array(betas, dtype=np.float64) |
|
self.betas = betas |
|
assert len(betas.shape) == 1, "betas must be 1-D" |
|
assert (betas > 0).all() and (betas <= 1).all() |
|
|
|
self.num_timesteps = int(betas.shape[0]) |
|
|
|
alphas = 1.0 - betas |
|
self.alphas_cumprod = np.cumprod(alphas, axis=0) |
|
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) |
|
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) |
|
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) |
|
|
|
|
|
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) |
|
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) |
|
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) |
|
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) |
|
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) |
|
|
|
|
|
self.posterior_variance = ( |
|
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
|
|
self.posterior_log_variance_clipped = np.log( |
|
np.append(self.posterior_variance[1], self.posterior_variance[1:]) |
|
) |
|
self.posterior_mean_coef1 = ( |
|
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
self.posterior_mean_coef2 = ( |
|
(1.0 - self.alphas_cumprod_prev) |
|
* np.sqrt(alphas) |
|
/ (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
|
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
) |
|
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = _extract_into_tensor( |
|
self.log_one_minus_alphas_cumprod, t, x_start.shape |
|
) |
|
return mean, variance, log_variance |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
""" |
|
Diffuse the data for a given number of diffusion steps. |
|
|
|
In other words, sample from q(x_t | x_0). |
|
|
|
:param x_start: the initial data batch. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:param noise: if specified, the split-out normal noise. |
|
:return: A noisy version of x_start. |
|
""" |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
assert noise.shape == x_start.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) |
|
* noise |
|
) |
|
|
|
def q_posterior_mean_variance(self, x_start, x_t, t): |
|
""" |
|
Compute the mean and variance of the diffusion posterior: |
|
|
|
q(x_{t-1} | x_t, x_0) |
|
|
|
""" |
|
assert x_start.shape == x_t.shape |
|
posterior_mean = ( |
|
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start |
|
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x_t.shape |
|
) |
|
assert ( |
|
posterior_mean.shape[0] |
|
== posterior_variance.shape[0] |
|
== posterior_log_variance_clipped.shape[0] |
|
== x_start.shape[0] |
|
) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance( |
|
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None, |
|
cond_fn=None, embed_model=None, edit_kwargs=None, |
|
): |
|
""" |
|
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of |
|
the initial x, x_0. |
|
|
|
:param model: the model, which takes a signal and a batch of timesteps |
|
as input. |
|
:param x: the [N x C x ...] tensor at time t. |
|
:param t: a 1-D Tensor of timesteps. |
|
:param clip_denoised: if True, clip the denoised signal into [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. Applies before |
|
clip_denoised. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param cond_fn: log p(y|x), to maximize |
|
:param embed_model: contains encoder and decoder |
|
:param edit_kwargs: replacement-based conditioning |
|
:return: a dict with the following keys: |
|
- 'mean': the model mean output. |
|
- 'variance': the model variance output. |
|
- 'log_variance': the log of 'variance'. |
|
- 'pred_xstart': the prediction for x_0. |
|
""" |
|
def process_xstart(x): |
|
if denoised_fn is not None: |
|
x = denoised_fn(x) |
|
if clip_denoised: |
|
return x.clamp(-1, 1) |
|
return x |
|
|
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
B, C = x.shape[:2] |
|
assert t.shape == (B,) |
|
model_output = model(x, self._scale_timesteps(t), **model_kwargs) |
|
|
|
if edit_kwargs is not None: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) |
|
) |
|
replaced_x0 = edit_kwargs["mask"] * edit_kwargs["gt"] + (1 - edit_kwargs["mask"]) * pred_xstart |
|
model_output = self._predict_eps_from_xstart(x_t=x, t=t, pred_xstart=replaced_x0) |
|
|
|
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: |
|
assert model_output.shape == (B, C * 2, *x.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, C, dim=1) |
|
if self.model_var_type == ModelVarType.LEARNED: |
|
model_log_variance = model_var_values |
|
model_variance = th.exp(model_log_variance) |
|
else: |
|
min_log = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x.shape |
|
) |
|
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) |
|
|
|
frac = (model_var_values + 1) / 2 |
|
model_log_variance = frac * max_log + (1 - frac) * min_log |
|
model_variance = th.exp(model_log_variance) |
|
else: |
|
model_variance, model_log_variance = { |
|
|
|
|
|
ModelVarType.FIXED_LARGE: ( |
|
np.append(self.posterior_variance[1], self.betas[1:]), |
|
np.log(np.append(self.posterior_variance[1], self.betas[1:])), |
|
), |
|
ModelVarType.FIXED_SMALL: ( |
|
self.posterior_variance, |
|
self.posterior_log_variance_clipped, |
|
), |
|
}[self.model_var_type] |
|
model_variance = _extract_into_tensor(model_variance, t, x.shape) |
|
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) |
|
|
|
if self.model_mean_type == ModelMeanType.PREVIOUS_X: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) |
|
) |
|
model_mean = model_output |
|
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: |
|
if self.model_mean_type == ModelMeanType.START_X: |
|
pred_xstart = process_xstart(model_output) |
|
else: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) |
|
) |
|
model_mean, _, _ = self.q_posterior_mean_variance( |
|
x_start=pred_xstart, x_t=x, t=t |
|
) |
|
else: |
|
raise NotImplementedError(self.model_mean_type) |
|
|
|
assert ( |
|
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape |
|
) |
|
return { |
|
"mean": model_mean, |
|
"variance": model_variance, |
|
"log_variance": model_log_variance, |
|
"pred_xstart": pred_xstart, |
|
} |
|
|
|
def _predict_xstart_from_eps(self, x_t, t, eps): |
|
assert x_t.shape == eps.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps |
|
) |
|
|
|
def _predict_xstart_from_xprev(self, x_t, t, xprev): |
|
assert x_t.shape == xprev.shape |
|
return ( |
|
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev |
|
- _extract_into_tensor( |
|
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape |
|
) |
|
* x_t |
|
) |
|
|
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- pred_xstart |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
|
|
def _scale_timesteps(self, t): |
|
if self.rescale_timesteps: |
|
return t.float() * (1000.0 / self.num_timesteps) |
|
return t |
|
|
|
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None, guidance_kwargs=None, |
|
model=None, embed_model=None, edit_kwargs=None, scale_factor=1., |
|
record=False): |
|
""" |
|
Compute the mean for the previous step, given a function cond_fn that |
|
computes the gradient of a conditional log probability with respect to |
|
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to |
|
condition on y. |
|
|
|
If dps=True, use diffusion posterior sampling, cond_fn is log p(y|x_0) |
|
instead of the grad of it. Need to use model (eps) and embed_model. |
|
|
|
This uses the conditioning strategy from Sohl-Dickstein et al. (2015). |
|
""" |
|
dps = True if guidance_kwargs.method == 'dps' else False |
|
if not dps: |
|
if edit_kwargs is None: |
|
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) |
|
new_mean = ( |
|
p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() |
|
) |
|
else: |
|
|
|
x = x[:, :, edit_kwargs["l_start"]:edit_kwargs["l_end"], :] |
|
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) |
|
new_mean = p_mean_var["mean"].float() |
|
new_mean[:, :, edit_kwargs["l_start"]:edit_kwargs["l_end"], :] += ( |
|
p_mean_var["variance"] * gradient.float()) |
|
else: |
|
assert model is not None |
|
step_size = guidance_kwargs.step_size |
|
with th.enable_grad(): |
|
xt = x.detach().requires_grad_(True) |
|
eps = model(xt, self._scale_timesteps(t), **model_kwargs) |
|
pred_xstart = self._predict_xstart_from_eps(xt, t, eps) |
|
|
|
if embed_model is not None and not guidance_kwargs.nn: |
|
pred_xstart = _decode(pred_xstart, embed_model, scale_factor=scale_factor) |
|
if record: |
|
pred_xstart.retain_grad() |
|
if edit_kwargs is not None: |
|
|
|
pred_xstart = pred_xstart[:, :, edit_kwargs["l_start"]:edit_kwargs["l_end"], :] |
|
log_probs = cond_fn(pred_xstart, self._scale_timesteps(t), **model_kwargs) |
|
gradient = th.autograd.grad(log_probs.sum(), xt)[0] |
|
|
|
|
|
if record: |
|
pred_xstart_up = pred_xstart + pred_xstart.grad |
|
log_probs_up = cond_fn(pred_xstart_up, self._scale_timesteps(t), **model_kwargs) |
|
|
|
cur_grad_diff = (self.prev_gradient_single - gradient).reshape(x.shape[0], -1).norm(dim=-1) |
|
prev_gradient_norm = self.prev_gradient_single.reshape(x.shape[0], -1).norm(dim=-1) |
|
if prev_gradient_norm.mean() > 1e-5: |
|
self.grad_norm.append(prev_gradient_norm.mean().item()) |
|
cur_grad_diff = cur_grad_diff / prev_gradient_norm |
|
self.gradient_diff.append(cur_grad_diff.mean().item()) |
|
self.prev_gradient_single = gradient |
|
self.log_probs.append((log_probs.mean().item())) |
|
|
|
gradient = gradient / th.sqrt(-log_probs.view(x.shape[0], 1, 1, 1) + 1e-12) |
|
|
|
|
|
if edit_kwargs is None: |
|
new_mean = ( |
|
p_mean_var["mean"].float() + step_size * gradient.float() |
|
) |
|
else: |
|
new_mean = p_mean_var["mean"].float() |
|
new_mean[:, :, edit_kwargs["l_start"]:edit_kwargs["l_end"], :] += step_size * gradient.float() |
|
|
|
|
|
if record: |
|
eps = model(xt + step_size * gradient.float(), self._scale_timesteps(t), **model_kwargs) |
|
pred_xstart_2 = self._predict_xstart_from_eps(xt, t, eps) |
|
pred_xstart_2 = _decode(pred_xstart_2, embed_model, scale_factor=scale_factor) |
|
log_probs_2 = cond_fn(pred_xstart_2, self._scale_timesteps(t), **model_kwargs) |
|
|
|
return new_mean |
|
|
|
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): |
|
""" |
|
Compute what the p_mean_variance output would have been, should the |
|
model's score function be conditioned by cond_fn. |
|
|
|
See condition_mean() for details on cond_fn. |
|
|
|
Unlike condition_mean(), this instead uses the conditioning strategy |
|
from Song et al (2020). |
|
""" |
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
|
|
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) |
|
eps = eps - (1 - alpha_bar).sqrt() * cond_fn( |
|
x, self._scale_timesteps(t), **model_kwargs |
|
) |
|
|
|
out = p_mean_var.copy() |
|
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) |
|
out["mean"], _, _ = self.q_posterior_mean_variance( |
|
x_start=out["pred_xstart"], x_t=x, t=t |
|
) |
|
return out |
|
|
|
def scg_sample(self, |
|
model, |
|
t, |
|
mean_pred, |
|
g_coeff, |
|
embed_model, |
|
scale_factor, |
|
model_kwargs=None, |
|
scg_kwargs=None, |
|
edit_kwargs=None, |
|
dc_kwargs=None, |
|
record=False, |
|
record_freq=100): |
|
""" |
|
Sample N x_{t-1} from x_t and select the best one. |
|
""" |
|
|
|
|
|
num_samples = scg_kwargs["num_samples"] |
|
sample = mean_pred.unsqueeze(dim=0) |
|
sample = sample.expand(num_samples, *mean_pred.shape).contiguous() |
|
noise = th.randn_like(sample) |
|
sample = sample + g_coeff * noise |
|
sample = sample.view(-1, *mean_pred.shape[1:]) |
|
t = t.repeat(num_samples) |
|
|
|
cloned_model_kwargs = {"y": model_kwargs["y"].repeat(num_samples)} |
|
eps = model(sample, self._scale_timesteps(t), **cloned_model_kwargs) |
|
pred_xstart = self._predict_xstart_from_eps(sample, t, eps) |
|
if edit_kwargs is not None: |
|
|
|
pred_xstart = pred_xstart[:, :, edit_kwargs["l_start"]:edit_kwargs["l_end"], :] |
|
if embed_model is not None: |
|
pred_xstart = _decode(pred_xstart, embed_model, scale_factor=scale_factor) |
|
|
|
if dc_kwargs is None or dc_kwargs.base <= 0: |
|
if record: |
|
|
|
each_loss = {} |
|
|
|
total_log_prob = 0 |
|
for rule_name, rule_target in model_kwargs["rule"].items(): |
|
gen_rule = _extract_rule(rule_name, pred_xstart) |
|
y_ = rule_target.repeat(num_samples, 1) |
|
log_prob = - LOSS_DICT[rule_name](gen_rule, y_) |
|
if record: |
|
each_loss[rule_name] = -log_prob.view(num_samples, -1) |
|
total_log_prob += log_prob * scg_kwargs.get(rule_name, 1.) |
|
total_log_prob = total_log_prob.view(num_samples, -1) |
|
max_ind = total_log_prob.argmax(dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample = sample.view(num_samples, *mean_pred.shape) |
|
sample = sample[max_ind, th.arange(mean_pred.shape[0])] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
|
|
|
sample = sample.view(num_samples, *mean_pred.shape) |
|
sub_samples = [] |
|
total_length = pred_xstart.shape[-1] |
|
start_inds = th.arange(0, total_length, dc_kwargs.base*8) |
|
rule_base = dc_kwargs.base // 16 |
|
for i, start_ind in enumerate(start_inds): |
|
end_ind = min(start_ind+dc_kwargs.base*8, total_length) |
|
pred_xstart_cur = pred_xstart[:, :, :, start_ind: end_ind] |
|
total_log_prob = 0 |
|
for rule_name, rule_target in model_kwargs["rule"].items(): |
|
gen_rule = _extract_rule(rule_name, pred_xstart_cur) |
|
if rule_name == 'note_density': |
|
half = rule_target.shape[-1] // 2 |
|
vt_nd_target = rule_target[:, :half][:, i*rule_base: min((i+1)*rule_base, half)] |
|
hr_nd_target = rule_target[:, half:][:, i*rule_base: min((i+1)*rule_base, half)] |
|
rule_target = th.concat((vt_nd_target, hr_nd_target), dim=-1) |
|
elif 'chord' in rule_name: |
|
rule_length = rule_target.shape[-1] |
|
rule_target = rule_target[:, i*rule_base: min((i+1)*rule_base, rule_length)] |
|
y_ = rule_target.repeat(num_samples, 1) |
|
log_prob = - LOSS_DICT[rule_name](gen_rule, y_) |
|
total_log_prob += log_prob * scg_kwargs.get(rule_name, 1.) |
|
total_log_prob = total_log_prob.view(num_samples, -1) |
|
max_ind = total_log_prob.argmax(dim=0) |
|
|
|
sub_sample = sample[max_ind, th.arange(mean_pred.shape[0]), :, start_ind//8: end_ind//8] |
|
sub_samples.append(sub_sample) |
|
sample = th.concat(sub_samples, dim=-2) |
|
|
|
if record: |
|
for rule_name, loss in each_loss.items(): |
|
current_loss = loss[max_ind, th.arange(mean_pred.shape[0])][0].item() |
|
self.each_loss[rule_name].append((t[0].item(), current_loss)) |
|
max_log_prob = total_log_prob[max_ind, th.arange(mean_pred.shape[0])][0].item() |
|
|
|
self.log_probs.append((t[0].item(), max_log_prob)) |
|
|
|
self.loss_std.append((t[0].item(), total_log_prob.std().item())) |
|
|
|
self.loss_range.append((t[0].item(), (max_log_prob - total_log_prob.min()).abs().item())) |
|
|
|
noise = noise.view(num_samples, *mean_pred.shape) |
|
gradient = noise[max_ind, th.arange(mean_pred.shape[0])] |
|
cur_grad_diff = (self.prev_gradient_single - gradient).reshape(sample.shape[0], -1).norm(dim=-1) |
|
prev_gradient_norm = self.prev_gradient_single.reshape(sample.shape[0], -1).norm(dim=-1) |
|
if prev_gradient_norm.mean() > 1e-5: |
|
self.grad_norm.append(prev_gradient_norm.mean().item()) |
|
cur_grad_diff = cur_grad_diff / prev_gradient_norm |
|
self.gradient_diff.append(cur_grad_diff.mean().item()) |
|
self.prev_gradient_single = gradient |
|
if (t[0] + 1) % record_freq == 0: |
|
pred_xstart = pred_xstart.view(num_samples, -1, *pred_xstart.shape[1:]) |
|
pred_xstart = pred_xstart[max_ind, th.arange(mean_pred.shape[0])] |
|
pred_xstart[pred_xstart <= -0.95] = -1. |
|
pred_xstart = ((pred_xstart + 1) * 63.5).clamp(0, 127).to(th.uint8) |
|
self.inter_piano_rolls.append(pred_xstart.cpu()) |
|
|
|
|
|
if len(model_kwargs["rule"].keys()) <= 1: |
|
plt.figure(figsize=(4, 3)) |
|
total_log_prob = total_log_prob.view(-1).cpu() |
|
plt.bar(range(len(total_log_prob)), -total_log_prob) |
|
plt.xlabel('choice') |
|
plt.ylabel('loss') |
|
plt.title(f't={t[0]+1}') |
|
plt.tight_layout() |
|
plt.savefig(f'loggings/debug/t={t[0]+1}.png') |
|
plt.show() |
|
return sample |
|
|
|
def p_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
embed_model=None, |
|
scale_factor=1., |
|
guidance_kwargs=None, |
|
scg_kwargs=None, |
|
edit_kwargs=None, |
|
record=False, |
|
): |
|
""" |
|
Sample x_{t-1} from the model at the given timestep. |
|
|
|
:param model: the model to sample from. |
|
:param x: the current tensor at x_{t-1}. |
|
:param t: the value of t, starting at 0 for the first diffusion step. |
|
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict containing the following keys: |
|
- 'sample': a random sample from the model. |
|
- 'pred_xstart': a prediction of x_0. |
|
""" |
|
if guidance_kwargs is not None: |
|
if guidance_kwargs.schedule: |
|
t_start = guidance_kwargs.t_start |
|
t_end = guidance_kwargs.t_end |
|
interval = guidance_kwargs.interval |
|
use_guidance = guide_schedule(t, t_start, t_end, interval) |
|
else: |
|
use_guidance = True |
|
else: |
|
use_guidance = False |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
cond_fn=cond_fn, |
|
embed_model=embed_model, |
|
edit_kwargs=edit_kwargs, |
|
) |
|
|
|
|
|
if cond_fn is not None and (use_guidance or scg_kwargs is not None): |
|
out["mean"] = self.condition_mean( |
|
cond_fn, out, x, t, model_kwargs=model_kwargs, |
|
guidance_kwargs=guidance_kwargs, model=model, embed_model=embed_model, |
|
edit_kwargs=edit_kwargs, scale_factor=scale_factor |
|
) |
|
|
|
if scg_kwargs is None: |
|
noise = th.randn_like(x) |
|
nonzero_mask = ( |
|
(t > self.t_end).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise |
|
|
|
else: |
|
if t[0] > self.t_end: |
|
mean_pred = out["mean"] |
|
g_coeff = th.exp(0.5 * out["log_variance"]) |
|
if use_guidance: |
|
dc_kwargs = getattr(guidance_kwargs, 'dc', None) |
|
sample = self.scg_sample(model, t, mean_pred, g_coeff, embed_model, scale_factor, |
|
model_kwargs=model_kwargs, scg_kwargs=scg_kwargs, |
|
edit_kwargs=edit_kwargs, dc_kwargs=dc_kwargs, record=record) |
|
else: |
|
sample = mean_pred + g_coeff * th.randn_like(x) |
|
if record: |
|
eps = model(sample, self._scale_timesteps(t), **model_kwargs) |
|
pred_xstart = self._predict_xstart_from_eps(sample, t, eps) |
|
pred_xstart = _decode(pred_xstart, embed_model, scale_factor=scale_factor) |
|
if len(model_kwargs["rule"].keys()) <= 1: |
|
|
|
total_log_prob = 0 |
|
for rule_name, rule_target in model_kwargs["rule"].items(): |
|
gen_rule = _extract_rule(rule_name, pred_xstart) |
|
log_prob = - LOSS_DICT[rule_name](gen_rule, rule_target) |
|
total_log_prob += log_prob.mean().item() * scg_kwargs.get(rule_name, 1.) |
|
self.log_probs.append((t[0].item(), total_log_prob)) |
|
if (t[0] + 1) % 100 == 0: |
|
pred_xstart[pred_xstart <= -0.95] = -1. |
|
pred_xstart = ((pred_xstart + 1) * 63.5).clamp(0, 127).to(th.uint8) |
|
self.inter_piano_rolls.append(pred_xstart.cpu()) |
|
else: |
|
sample = out["mean"] |
|
|
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def p_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
t_end=0, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
embed_model=None, |
|
scale_factor=1., |
|
guidance_kwargs=None, |
|
scg_kwargs=None, |
|
edit_kwargs=None, |
|
record=False, |
|
): |
|
""" |
|
Generate samples from the model. |
|
|
|
:param model: the model module. |
|
:param shape: the shape of the samples, (N, C, H, W). |
|
:param noise: if specified, the noise from the encoder to sample. |
|
Should be of the same shape as `shape`. |
|
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param t_end: early stopping for the sampling process |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param device: if specified, the device to create the samples on. |
|
If not specified, use a model parameter's device. |
|
:param progress: if True, show a tqdm progress bar. |
|
:return: a non-differentiable batch of samples. |
|
""" |
|
final = None |
|
self.t_end = t_end |
|
if record: |
|
self.prev_gradient_single = th.zeros(shape, device=device) |
|
self.gradient_diff = [] |
|
self.grad_norm = [] |
|
self.log_probs = [] |
|
|
|
self.each_loss = defaultdict(list) |
|
self.inter_piano_rolls = [] |
|
self.loss_std = [] |
|
self.loss_range = [] |
|
for sample in self.p_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
t_end=t_end, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
embed_model=embed_model, |
|
scale_factor=scale_factor, |
|
guidance_kwargs=guidance_kwargs, |
|
scg_kwargs=scg_kwargs, |
|
edit_kwargs=edit_kwargs, |
|
record=record, |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def p_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
t_end=0, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
embed_model=None, |
|
scale_factor=1., |
|
guidance_kwargs=None, |
|
scg_kwargs=None, |
|
edit_kwargs=None, |
|
record=False, |
|
): |
|
""" |
|
Generate samples from the model and yield intermediate samples from |
|
each timestep of diffusion. |
|
|
|
Arguments are the same as p_sample_loop(). |
|
Returns a generator over dicts, where each dict is the return value of |
|
p_sample(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
elif edit_kwargs is not None: |
|
t = th.tensor([edit_kwargs["noise_level"]-1] * shape[0], device=device) |
|
alpha_cumprod = _extract_into_tensor(self.alphas_cumprod, t, shape) |
|
img = th.sqrt(alpha_cumprod) * edit_kwargs["gt"] + th.sqrt((1 - alpha_cumprod)) * th.randn(*shape, device=device) |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
if t_end: |
|
indices = indices[:-t_end] |
|
if edit_kwargs is not None: |
|
t_start = self.num_timesteps - edit_kwargs["noise_level"] |
|
indices = indices[t_start:] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.p_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
embed_model=embed_model, |
|
scale_factor=scale_factor, |
|
guidance_kwargs=guidance_kwargs, |
|
scg_kwargs=scg_kwargs, |
|
edit_kwargs=edit_kwargs, |
|
record=record, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def ddim_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
embed_model=None, |
|
scale_factor=1., |
|
guidance_kwargs=None, |
|
edit_kwargs=None, |
|
scg_kwargs=None, |
|
record=False, |
|
): |
|
""" |
|
Sample x_{t-1} from the model using DDIM. |
|
|
|
Same usage as p_sample(). |
|
""" |
|
if guidance_kwargs is not None: |
|
if guidance_kwargs.schedule: |
|
t_start = guidance_kwargs.t_start |
|
t_end = guidance_kwargs.t_end |
|
interval = guidance_kwargs.interval |
|
use_guidance = guide_schedule(t, t_start, t_end, interval) |
|
else: |
|
use_guidance = True |
|
else: |
|
use_guidance = False |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
cond_fn=cond_fn, |
|
embed_model=embed_model, |
|
edit_kwargs=edit_kwargs, |
|
) |
|
if cond_fn is not None and use_guidance: |
|
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) |
|
|
|
|
|
|
|
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) |
|
|
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) |
|
sigma = ( |
|
eta |
|
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) |
|
* th.sqrt(1 - alpha_bar / alpha_bar_prev) |
|
) |
|
|
|
mean_pred = ( |
|
out["pred_xstart"] * th.sqrt(alpha_bar_prev) |
|
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps |
|
) |
|
if scg_kwargs is None: |
|
noise = th.randn_like(x) |
|
nonzero_mask = ( |
|
(t != self.t_end).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
sample = mean_pred + nonzero_mask * sigma * noise |
|
else: |
|
if t[0] > self.t_end: |
|
g_coeff = sigma |
|
if use_guidance: |
|
dc_kwargs = getattr(guidance_kwargs, 'dc', None) |
|
sample = self.scg_sample(self._wrap_model(model), t, mean_pred, g_coeff, embed_model, scale_factor, |
|
model_kwargs=model_kwargs, scg_kwargs=scg_kwargs, edit_kwargs=edit_kwargs, |
|
dc_kwargs=dc_kwargs, record=record, record_freq=10) |
|
else: |
|
sample = mean_pred + g_coeff * th.randn_like(x) |
|
if record: |
|
eps = self._wrap_model(model)(sample, self._scale_timesteps(t), **model_kwargs) |
|
pred_xstart = self._predict_xstart_from_eps(sample, t, eps) |
|
pred_xstart = _decode(pred_xstart, embed_model, scale_factor=scale_factor) |
|
total_log_prob = 0 |
|
for rule_name, rule_target in model_kwargs["rule"].items(): |
|
gen_rule = _extract_rule(rule_name, pred_xstart) |
|
log_prob = - LOSS_DICT[rule_name](gen_rule, rule_target) |
|
total_log_prob += log_prob.mean().item() * scg_kwargs.get(rule_name, 1.) |
|
self.log_probs.append((t[0].item(), total_log_prob)) |
|
|
|
if (t[0] + 1) % 10 == 0: |
|
pred_xstart[pred_xstart <= -0.95] = -1. |
|
pred_xstart = ((pred_xstart + 1) * 63.5).clamp(0, 127).to(th.uint8) |
|
self.inter_piano_rolls.append(pred_xstart.cpu()) |
|
else: |
|
sample = mean_pred |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_reverse_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
): |
|
""" |
|
Sample x_{t+1} from the model using DDIM reverse ODE. |
|
""" |
|
assert eta == 0.0, "Reverse ODE only for deterministic path" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
|
|
eps = ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x |
|
- out["pred_xstart"] |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) |
|
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) |
|
|
|
|
|
mean_pred = ( |
|
out["pred_xstart"] * th.sqrt(alpha_bar_next) |
|
+ th.sqrt(1 - alpha_bar_next) * eps |
|
) |
|
|
|
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
t_end=0, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
embed_model=None, |
|
scale_factor=1., |
|
guidance_kwargs=None, |
|
scg_kwargs=None, |
|
edit_kwargs=None, |
|
record=False, |
|
): |
|
""" |
|
Generate samples from the model using DDIM. |
|
|
|
Same usage as p_sample_loop(). |
|
""" |
|
final = None |
|
self.t_end = t_end |
|
if record: |
|
self.prev_gradient_single = th.zeros(shape, device=device) |
|
self.gradient_diff = [] |
|
self.grad_norm = [] |
|
self.log_probs = [] |
|
self.inter_piano_rolls = [] |
|
self.loss_std = [] |
|
self.loss_range = [] |
|
for sample in self.ddim_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
t_end=t_end, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
eta=eta, |
|
embed_model=embed_model, |
|
scale_factor=scale_factor, |
|
guidance_kwargs=guidance_kwargs, |
|
scg_kwargs=scg_kwargs, |
|
edit_kwargs=edit_kwargs, |
|
record=record, |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def ddim_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
t_end=0, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
embed_model=None, |
|
scale_factor=1., |
|
guidance_kwargs=None, |
|
scg_kwargs=None, |
|
edit_kwargs=None, |
|
record=False, |
|
): |
|
""" |
|
Use DDIM to sample from the model and yield intermediate samples from |
|
each timestep of DDIM. |
|
|
|
Same usage as p_sample_loop_progressive(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
elif edit_kwargs is not None: |
|
t = th.tensor([edit_kwargs["noise_level"]-1] * shape[0], device=device) |
|
alpha_cumprod = _extract_into_tensor(self.alphas_cumprod, t, shape) |
|
img = th.sqrt(alpha_cumprod) * edit_kwargs["gt"] + th.sqrt((1 - alpha_cumprod)) * th.randn(*shape, device=device) |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
if t_end: |
|
indices = indices[:-t_end] |
|
if edit_kwargs is not None: |
|
t_start = self.num_timesteps - edit_kwargs["noise_level"] |
|
indices = indices[t_start:] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.ddim_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
eta=eta, |
|
embed_model=embed_model, |
|
scale_factor=scale_factor, |
|
guidance_kwargs=guidance_kwargs, |
|
scg_kwargs=scg_kwargs, |
|
edit_kwargs=edit_kwargs, |
|
record=record, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def _vb_terms_bpd( |
|
self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None |
|
): |
|
""" |
|
Get a term for the variational lower-bound. |
|
|
|
The resulting units are bits (rather than nats, as one might expect). |
|
This allows for comparison to other papers. |
|
|
|
:return: a dict with the following keys: |
|
- 'output': a shape [N] tensor of NLLs or KLs. |
|
- 'pred_xstart': the x_0 predictions. |
|
""" |
|
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( |
|
x_start=x_start, x_t=x_t, t=t |
|
) |
|
out = self.p_mean_variance( |
|
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs |
|
) |
|
kl = normal_kl( |
|
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] |
|
) |
|
kl = mean_flat(kl) / np.log(2.0) |
|
|
|
decoder_nll = -discretized_gaussian_log_likelihood( |
|
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] |
|
) |
|
assert decoder_nll.shape == x_start.shape |
|
decoder_nll = mean_flat(decoder_nll) / np.log(2.0) |
|
|
|
|
|
|
|
output = th.where((t == 0), decoder_nll, kl) |
|
return {"output": output, "pred_xstart": out["pred_xstart"]} |
|
|
|
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): |
|
""" |
|
Compute training losses for a single timestep. |
|
|
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param t: a batch of timestep indices. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param noise: if specified, the specific Gaussian noise to try to remove. |
|
:return: a dict with the key "loss" containing a tensor of shape [N]. |
|
Some mean or variance settings may also have other keys. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
x_t = self.q_sample(x_start, t, noise=noise) |
|
|
|
terms = {} |
|
|
|
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: |
|
terms["loss"] = self._vb_terms_bpd( |
|
model=model, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t, |
|
clip_denoised=False, |
|
model_kwargs=model_kwargs, |
|
)["output"] |
|
if self.loss_type == LossType.RESCALED_KL: |
|
terms["loss"] *= self.num_timesteps |
|
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: |
|
model_output = model(x_t, self._scale_timesteps(t), **model_kwargs) |
|
|
|
if self.model_var_type in [ |
|
ModelVarType.LEARNED, |
|
ModelVarType.LEARNED_RANGE, |
|
]: |
|
B, C = x_t.shape[:2] |
|
assert model_output.shape == (B, C * 2, *x_t.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, C, dim=1) |
|
|
|
|
|
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) |
|
terms["vb"] = self._vb_terms_bpd( |
|
model=lambda *args, r=frozen_out: r, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t, |
|
clip_denoised=False, |
|
)["output"] |
|
if self.loss_type == LossType.RESCALED_MSE: |
|
|
|
|
|
terms["vb"] *= self.num_timesteps / 1000.0 |
|
|
|
target = { |
|
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( |
|
x_start=x_start, x_t=x_t, t=t |
|
)[0], |
|
ModelMeanType.START_X: x_start, |
|
ModelMeanType.EPSILON: noise, |
|
}[self.model_mean_type] |
|
assert model_output.shape == target.shape == x_start.shape |
|
terms["mse"] = mean_flat((target - model_output) ** 2) |
|
if "vb" in terms: |
|
terms["loss"] = terms["mse"] + terms["vb"] |
|
else: |
|
terms["loss"] = terms["mse"] |
|
else: |
|
raise NotImplementedError(self.loss_type) |
|
|
|
return terms |
|
|
|
def _prior_bpd(self, x_start): |
|
""" |
|
Get the prior KL term for the variational lower-bound, measured in |
|
bits-per-dim. |
|
|
|
This term can't be optimized, as it only depends on the encoder. |
|
|
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:return: a batch of [N] KL values (in bits), one per batch element. |
|
""" |
|
batch_size = x_start.shape[0] |
|
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) |
|
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) |
|
kl_prior = normal_kl( |
|
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 |
|
) |
|
return mean_flat(kl_prior) / np.log(2.0) |
|
|
|
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): |
|
""" |
|
Compute the entire variational lower-bound, measured in bits-per-dim, |
|
as well as other related quantities. |
|
|
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param clip_denoised: if True, clip denoised samples. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
|
|
:return: a dict containing the following keys: |
|
- total_bpd: the total variational lower-bound, per batch element. |
|
- prior_bpd: the prior term in the lower-bound. |
|
- vb: an [N x T] tensor of terms in the lower-bound. |
|
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. |
|
- mse: an [N x T] tensor of epsilon MSEs for each timestep. |
|
""" |
|
device = x_start.device |
|
batch_size = x_start.shape[0] |
|
|
|
vb = [] |
|
xstart_mse = [] |
|
mse = [] |
|
for t in list(range(self.num_timesteps))[::-1]: |
|
t_batch = th.tensor([t] * batch_size, device=device) |
|
noise = th.randn_like(x_start) |
|
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) |
|
|
|
with th.no_grad(): |
|
out = self._vb_terms_bpd( |
|
model, |
|
x_start=x_start, |
|
x_t=x_t, |
|
t=t_batch, |
|
clip_denoised=clip_denoised, |
|
model_kwargs=model_kwargs, |
|
) |
|
vb.append(out["output"]) |
|
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) |
|
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) |
|
mse.append(mean_flat((eps - noise) ** 2)) |
|
|
|
vb = th.stack(vb, dim=1) |
|
xstart_mse = th.stack(xstart_mse, dim=1) |
|
mse = th.stack(mse, dim=1) |
|
|
|
prior_bpd = self._prior_bpd(x_start) |
|
total_bpd = vb.sum(dim=1) + prior_bpd |
|
return { |
|
"total_bpd": total_bpd, |
|
"prior_bpd": prior_bpd, |
|
"vb": vb, |
|
"xstart_mse": xstart_mse, |
|
"mse": mse, |
|
} |
|
|
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape): |
|
""" |
|
Extract values from a 1-D numpy array for a batch of indices. |
|
|
|
:param arr: the 1-D numpy array. |
|
:param timesteps: a tensor of indices into the array to extract. |
|
:param broadcast_shape: a larger shape of K dimensions with the batch |
|
dimension equal to the length of timesteps. |
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. |
|
""" |
|
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() |
|
while len(res.shape) < len(broadcast_shape): |
|
res = res[..., None] |
|
return res.expand(broadcast_shape) |
|
|
|
|
|
def _decode(pred_zstart, embed_model, scale_factor=1., threshold=False): |
|
image_size_h = pred_zstart.shape[-2] |
|
image_size_w = pred_zstart.shape[-1] |
|
pred_zstart = pred_zstart / scale_factor |
|
sample = pred_zstart.permute(0, 1, 3, 2) |
|
sample = th.chunk(sample, image_size_h // image_size_w, dim=-1) |
|
sample = th.concat(sample, dim=0) |
|
sample = embed_model.decode(sample) |
|
pred_xstart = th.concat(th.chunk(sample, image_size_h // image_size_w, dim=0), dim=-1) |
|
if threshold: |
|
pred_xstart[pred_xstart <= -0.95] = -1. |
|
return pred_xstart |
|
|
|
|
|
def _extract_rule(rule_name, pred_xstart): |
|
device = pred_xstart.device |
|
if 'chord' in rule_name: |
|
|
|
num_processes = 4 |
|
pred_xstart = pred_xstart.cpu() |
|
pred_xstart_split = th.chunk(pred_xstart, num_processes) |
|
|
|
rule_func = FUNC_DICT[rule_name] |
|
with multiprocessing.Pool(processes=num_processes) as pool: |
|
gen_rule = pool.map(rule_func, pred_xstart_split) |
|
|
|
if len(gen_rule[0].shape) == 1: |
|
gen_rule = [item.unsqueeze(dim=0) for item in gen_rule] |
|
gen_rule = th.concat(gen_rule, dim=0).to(device) |
|
|
|
else: |
|
gen_rule = FUNC_DICT[rule_name](pred_xstart) |
|
return gen_rule |
|
|
|
|
|
def _encode(pred_xstart, embed_model, scale_factor=1.): |
|
image_size_h = pred_xstart.shape[-2] |
|
image_size_w = pred_xstart.shape[-1] |
|
seq_len = image_size_w // image_size_h |
|
micro = th.chunk(pred_xstart, seq_len, dim=-1) |
|
micro = th.concat(micro, dim=0) |
|
micro = embed_model.encode_save(micro, range_fix=False) |
|
if micro.shape[1] == 8: |
|
z, _ = th.chunk(micro, 2, dim=1) |
|
else: |
|
z = micro |
|
z = th.concat(th.chunk(z, seq_len, dim=0), dim=-1) |
|
z = z.permute(0, 1, 3, 2) |
|
return z * scale_factor |
|
|
|
|
|
def guide_schedule(t, t_start=750, t_end=0, interval=1): |
|
flag = t_start > t[0] >= t_end and (t[0] + 1) % interval == 0 |
|
return flag |
|
|