|
""" |
|
Helpers to train with 16-bit precision. |
|
""" |
|
|
|
import numpy as np |
|
import torch as th |
|
import torch.nn as nn |
|
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors |
|
|
|
from . import logger |
|
|
|
INITIAL_LOG_LOSS_SCALE = 20.0 |
|
|
|
|
|
def convert_module_to_f16(l): |
|
""" |
|
Convert primitive modules to float16. |
|
""" |
|
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): |
|
l.weight.data = l.weight.data.half() |
|
if l.bias is not None: |
|
l.bias.data = l.bias.data.half() |
|
|
|
|
|
def convert_module_to_f32(l): |
|
""" |
|
Convert primitive modules to float32, undoing convert_module_to_f16(). |
|
""" |
|
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): |
|
l.weight.data = l.weight.data.float() |
|
if l.bias is not None: |
|
l.bias.data = l.bias.data.float() |
|
|
|
|
|
def make_master_params(param_groups_and_shapes): |
|
""" |
|
Copy model parameters into a (differently-shaped) list of full-precision |
|
parameters. |
|
""" |
|
master_params = [] |
|
for param_group, shape in param_groups_and_shapes: |
|
master_param = nn.Parameter( |
|
_flatten_dense_tensors( |
|
[param.detach().float() for (_, param) in param_group] |
|
).view(shape) |
|
) |
|
master_param.requires_grad = True |
|
master_params.append(master_param) |
|
return master_params |
|
|
|
|
|
def model_grads_to_master_grads(param_groups_and_shapes, master_params): |
|
""" |
|
Copy the gradients from the model parameters into the master parameters |
|
from make_master_params(). |
|
""" |
|
for master_param, (param_group, shape) in zip( |
|
master_params, param_groups_and_shapes |
|
): |
|
master_param.grad = _flatten_dense_tensors( |
|
[param_grad_or_zeros(param) for (_, param) in param_group] |
|
).view(shape) |
|
|
|
|
|
def master_params_to_model_params(param_groups_and_shapes, master_params): |
|
""" |
|
Copy the master parameter data back into the model parameters. |
|
""" |
|
|
|
|
|
for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes): |
|
for (_, param), unflat_master_param in zip( |
|
param_group, unflatten_master_params(param_group, master_param.view(-1)) |
|
): |
|
param.detach().copy_(unflat_master_param) |
|
|
|
|
|
def unflatten_master_params(param_group, master_param): |
|
return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group]) |
|
|
|
|
|
def get_param_groups_and_shapes(named_model_params): |
|
named_model_params = list(named_model_params) |
|
scalar_vector_named_params = ( |
|
[(n, p) for (n, p) in named_model_params if p.ndim <= 1], |
|
(-1), |
|
) |
|
matrix_named_params = ( |
|
[(n, p) for (n, p) in named_model_params if p.ndim > 1], |
|
(1, -1), |
|
) |
|
return [scalar_vector_named_params, matrix_named_params] |
|
|
|
|
|
def master_params_to_state_dict( |
|
model, param_groups_and_shapes, master_params, use_fp16 |
|
): |
|
if use_fp16: |
|
state_dict = model.state_dict() |
|
for master_param, (param_group, _) in zip( |
|
master_params, param_groups_and_shapes |
|
): |
|
for (name, _), unflat_master_param in zip( |
|
param_group, unflatten_master_params(param_group, master_param.view(-1)) |
|
): |
|
assert name in state_dict |
|
state_dict[name] = unflat_master_param |
|
else: |
|
state_dict = model.state_dict() |
|
for i, (name, _value) in enumerate(model.named_parameters()): |
|
assert name in state_dict |
|
state_dict[name] = master_params[i] |
|
return state_dict |
|
|
|
|
|
def state_dict_to_master_params(model, state_dict, use_fp16): |
|
if use_fp16: |
|
named_model_params = [ |
|
(name, state_dict[name]) for name, _ in model.named_parameters() |
|
] |
|
param_groups_and_shapes = get_param_groups_and_shapes(named_model_params) |
|
master_params = make_master_params(param_groups_and_shapes) |
|
else: |
|
master_params = [state_dict[name] for name, _ in model.named_parameters()] |
|
return master_params |
|
|
|
|
|
def zero_master_grads(master_params): |
|
for param in master_params: |
|
param.grad = None |
|
|
|
|
|
def zero_grad(model_params): |
|
for param in model_params: |
|
|
|
if param.grad is not None: |
|
param.grad.detach_() |
|
param.grad.zero_() |
|
|
|
|
|
def param_grad_or_zeros(param): |
|
if param.grad is not None: |
|
return param.grad.data.detach() |
|
else: |
|
return th.zeros_like(param) |
|
|
|
|
|
class MixedPrecisionTrainer: |
|
def __init__( |
|
self, |
|
*, |
|
model, |
|
use_fp16=False, |
|
fp16_scale_growth=1e-3, |
|
initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE, |
|
): |
|
self.model = model |
|
self.use_fp16 = use_fp16 |
|
self.fp16_scale_growth = fp16_scale_growth |
|
|
|
self.model_params = list(self.model.parameters()) |
|
self.master_params = self.model_params |
|
self.param_groups_and_shapes = None |
|
self.lg_loss_scale = initial_lg_loss_scale |
|
|
|
if self.use_fp16: |
|
self.param_groups_and_shapes = get_param_groups_and_shapes( |
|
self.model.named_parameters() |
|
) |
|
self.master_params = make_master_params(self.param_groups_and_shapes) |
|
self.model.convert_to_fp16() |
|
|
|
def zero_grad(self): |
|
zero_grad(self.model_params) |
|
|
|
def backward(self, loss: th.Tensor): |
|
if self.use_fp16: |
|
loss_scale = 2 ** self.lg_loss_scale |
|
(loss * loss_scale).backward() |
|
else: |
|
loss.backward() |
|
|
|
def optimize(self, opt: th.optim.Optimizer): |
|
if self.use_fp16: |
|
return self._optimize_fp16(opt) |
|
else: |
|
return self._optimize_normal(opt) |
|
|
|
def _optimize_fp16(self, opt: th.optim.Optimizer): |
|
logger.logkv_mean("lg_loss_scale", self.lg_loss_scale) |
|
model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params) |
|
grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale) |
|
if check_overflow(grad_norm): |
|
self.lg_loss_scale -= 1 |
|
logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}") |
|
zero_master_grads(self.master_params) |
|
return False |
|
|
|
logger.logkv_mean("grad_norm", grad_norm) |
|
logger.logkv_mean("param_norm", param_norm) |
|
|
|
for p in self.master_params: |
|
p.grad.mul_(1.0 / (2 ** self.lg_loss_scale)) |
|
opt.step() |
|
zero_master_grads(self.master_params) |
|
master_params_to_model_params(self.param_groups_and_shapes, self.master_params) |
|
self.lg_loss_scale += self.fp16_scale_growth |
|
return True |
|
|
|
def _optimize_normal(self, opt: th.optim.Optimizer): |
|
grad_norm, param_norm = self._compute_norms() |
|
logger.logkv_mean("grad_norm", grad_norm) |
|
logger.logkv_mean("param_norm", param_norm) |
|
opt.step() |
|
return True |
|
|
|
def _compute_norms(self, grad_scale=1.0): |
|
grad_norm = 0.0 |
|
param_norm = 0.0 |
|
for p in self.master_params: |
|
with th.no_grad(): |
|
param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2 |
|
if p.grad is not None: |
|
grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2 |
|
return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm) |
|
|
|
def master_params_to_state_dict(self, master_params): |
|
return master_params_to_state_dict( |
|
self.model, self.param_groups_and_shapes, master_params, self.use_fp16 |
|
) |
|
|
|
def state_dict_to_master_params(self, state_dict): |
|
return state_dict_to_master_params(self.model, state_dict, self.use_fp16) |
|
|
|
|
|
def check_overflow(value): |
|
return (value == float("inf")) or (value == -float("inf")) or (value != value) |
|
|