|
import argparse |
|
import os |
|
|
|
|
|
import json |
|
import random |
|
import re |
|
import torch |
|
import numpy as np |
|
from tqdm import tqdm |
|
import shortuuid |
|
import sys |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from decord import VideoReader, cpu |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
from PIL import Image |
|
import math |
|
|
|
from .gpt4v import TaskSpec, ParsedAnswer, Question |
|
from .exceptions import GPTOutputParseException, GPTMaxTriesExceededException |
|
import threading |
|
from typing import List, Tuple, Union |
|
from loguru import logger |
|
from copy import deepcopy |
|
import time |
|
import os |
|
|
|
seed = 42 |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
def build_transform(input_size): |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
|
|
T.ToTensor(), |
|
]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def load_image(image, input_size=448, max_num=12): |
|
image = image.convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
class InternModel(object): |
|
def __init__(self, task:TaskSpec, |
|
model:str="OpenGVLab/InternVL2-8B"): |
|
|
|
self.task:TaskSpec = task |
|
self.model = self.get_model(model) |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True, use_fast=False) |
|
|
|
|
|
def get_model(self, model): |
|
|
|
|
|
if model == "OpenGVLab/InternVL2-8B": |
|
model_weights = AutoModel.from_pretrained( |
|
model, |
|
torch_dtype=torch.float16, |
|
load_in_4bit=True, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True).eval() |
|
return model_weights |
|
else: |
|
raise ValueError(f"Such model {model} does not exist!") |
|
|
|
def ask(self, payload:dict, n_choices=1, temperature=0.7) -> Tuple[List[dict], List[dict]]: |
|
""" |
|
args: |
|
payload: json dictionary, prepared by `prepare_payload` |
|
""" |
|
|
|
def intern_thread(self, idx, payload, results, temperature): |
|
|
|
|
|
mod_payload = deepcopy(payload) |
|
question = payload['question'] |
|
pixel_values = payload['pixel_values'] |
|
num_patches_list = payload['num_patches_list'] |
|
max_tokens = payload['max_tokens'] |
|
|
|
generation_config = dict(max_new_tokens=max_tokens, do_sample=True) |
|
|
|
try: |
|
|
|
output_text = self.model.chat(self.tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=None) |
|
|
|
except Exception as e: |
|
raise e |
|
|
|
|
|
message = {'content' : output_text} |
|
|
|
results[idx] = {"metadata": output_text, "message": message} |
|
|
|
return |
|
|
|
assert n_choices >= 1 |
|
results = [None] * n_choices |
|
if n_choices > 1: |
|
intern_jobs = [threading.Thread(target=intern_thread, |
|
args=(self, idx, payload, results, temperature)) |
|
for idx in range(n_choices)] |
|
for job in intern_jobs: |
|
job.start() |
|
for job in intern_jobs: |
|
job.join() |
|
else: |
|
intern_thread(self, 0, payload, results, temperature) |
|
|
|
messages:List[dict] = [ res["message"] for res in results] |
|
metadata:List[dict] = [ res["metadata"] for res in results] |
|
return messages, metadata |
|
|
|
|
|
@staticmethod |
|
def prepare_payload(question:Question, |
|
max_tokens=1000, |
|
verbose:bool=False, |
|
prepend:Union[dict, None]=None, |
|
**kwargs |
|
) -> dict: |
|
|
|
image_dic = None |
|
text = '' |
|
dic_list = question.get_json() |
|
img_list = [] |
|
for dic in question.get_json(): |
|
|
|
if dic['type'] == 'text': |
|
text += dic['text'] |
|
|
|
|
|
elif dic['type'] == 'image_url': |
|
img_list.append(dic['image']) |
|
text += '<image>\n' |
|
|
|
pixel_list = [load_image(image).to(torch.float16).cuda() for image in img_list] |
|
|
|
if pixel_list: |
|
pixel_values = torch.cat(tuple(pixel_list), dim=0) |
|
num_patches_list = [img_tensor.size(0) for img_tensor in pixel_list] |
|
|
|
else: |
|
pixel_values = None |
|
num_patches_list = None |
|
|
|
payload = { |
|
'question': text, |
|
'pixel_values': pixel_values, |
|
'num_patches_list':num_patches_list, |
|
"max_tokens": max_tokens, |
|
} |
|
|
|
return payload |
|
|
|
|
|
def rough_guess(self, question:Question, max_tokens=1000, |
|
max_tries=1, query_id:int=0, |
|
verbose=False, temperature=1, |
|
**kwargs): |
|
|
|
p = self.prepare_payload(question, max_tokens = max_tokens, verbose=verbose, prepend=None, |
|
model=self.model) |
|
|
|
ok = False |
|
reattempt = 0 |
|
while not ok: |
|
response, meta_data = self.ask(p, temperature=temperature) |
|
response = response[0] |
|
|
|
try: |
|
parsed_response = self.task.answer_type.parser(response["content"]) |
|
except GPTOutputParseException as e: |
|
|
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
reattempt += 1 |
|
if reattempt > max_tries: |
|
logger.error(f"max tries ({max_tries}) exceeded.") |
|
raise GPTMaxTriesExceededException |
|
|
|
logger.warning(f"Reattempt #{reattempt} querying LLM") |
|
continue |
|
ok = True |
|
|
|
return parsed_response, response, meta_data, p |
|
|
|
def all_task_rough_guess(self, task, question:Question, max_tokens=1000, |
|
max_tries=1, query_id:int=0, |
|
verbose=False, temperature=1, |
|
**kwargs): |
|
|
|
p = self.prepare_payload(question, max_tokens = max_tokens, verbose=verbose, prepend=None, |
|
model=self.model) |
|
|
|
ok = False |
|
reattempt = 0 |
|
while not ok: |
|
response, meta_data = self.ask(p, temperature=temperature) |
|
response = response[0] |
|
|
|
try: |
|
parsed_response = task.answer_type.parser(response["content"]) |
|
except GPTOutputParseException as e: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
reattempt += 1 |
|
if reattempt > max_tries: |
|
logger.error(f"max tries ({max_tries}) exceeded.") |
|
raise GPTMaxTriesExceededException |
|
|
|
logger.warning(f"Reattempt #{reattempt} querying LLM") |
|
continue |
|
ok = True |
|
|
|
return parsed_response, response, meta_data, p |
|
|
|
def many_rough_guesses(self, num_threads:int, |
|
question:Question, max_tokens=1000, |
|
verbose=False, max_tries=1, temperature=1 |
|
) -> List[Tuple[ParsedAnswer, str, dict, dict]]: |
|
""" |
|
Args: |
|
num_threads : number of independent threads. |
|
all other arguments are same as those of `rough_guess()` |
|
|
|
Returns |
|
List of elements, each element is a tuple following the |
|
return signature of `rough_guess()` |
|
""" |
|
|
|
p = self.prepare_payload(question, max_tokens = max_tokens, verbose=verbose, prepend=None, |
|
model=self.model) |
|
|
|
|
|
n_choices = num_threads |
|
|
|
|
|
ok = False |
|
reattempt = 0 |
|
while not ok: |
|
response, meta_data = self.ask(p, n_choices=n_choices, temperature=temperature) |
|
try: |
|
parsed_response = [self.task.answer_type.parser(r["content"]) for r in response] |
|
except GPTOutputParseException as e: |
|
|
|
|
|
|
|
reattempt += 1 |
|
if reattempt > max_tries: |
|
logger.error(f"max tries ({max_tries}) exceeded.") |
|
raise GPTMaxTriesExceededException |
|
|
|
logger.warning(f"Reattempt #{reattempt} querying LLM") |
|
continue |
|
ok = True |
|
|
|
return parsed_response, response, meta_data, p |
|
|
|
def run_once(self, question:Question, max_tokens=1000, temperature=1, **kwargs): |
|
q = self.task.first_question(question) |
|
p_ans, ans, meta, p = self.rough_guess(q, max_tokens=max_tokens, temperature=temperature, **kwargs) |
|
return p_ans, ans, meta, p |
|
|
|
|
|
|
|
|
|
|
|
|