|
from typing import List, Union, Tuple |
|
from loguru import logger |
|
import io |
|
from openai import OpenAI |
|
from .common import TaskSpec, ParsedAnswer, Question |
|
from .exceptions import GPTOutputParseException, GPTMaxTriesExceededException |
|
|
|
|
|
class GPTModel(object): |
|
def __init__(self, api_key:str, |
|
task:TaskSpec, |
|
model:str="gpt-4o", |
|
): |
|
self.open_ai_key:str = api_key |
|
|
|
self.task:TaskSpec = task |
|
self.model:str = model |
|
|
|
def ask(self, payload: dict, n_choices=1) -> Tuple[dict, dict]: |
|
""" |
|
args: |
|
payload: json dictionary, prepared by `prepare_payload` |
|
""" |
|
client = OpenAI(api_key=self.open_ai_key) |
|
|
|
try: |
|
if self.model in ("gpt-4o", 'gpt-4o-mini', 'gpt-4-turbo'): |
|
response = client.chat.completions.create( |
|
model=self.model, |
|
messages=payload["messages"], |
|
max_tokens=payload["max_tokens"], |
|
n=n_choices |
|
) |
|
elif self.model in ('o1-mini', 'o1', 'o3-mini', 'o3'): |
|
response = client.chat.completions.create( |
|
model=self.model, |
|
messages=payload["messages"], |
|
max_completion_tokens=payload["max_tokens"], |
|
n=n_choices |
|
) |
|
|
|
|
|
|
|
except Exception as e: |
|
|
|
raise e |
|
|
|
|
|
response = response.dict() |
|
messages = [choice["message"] for choice in response["choices"]] |
|
|
|
metadata = response["usage"] |
|
|
|
return messages, metadata |
|
|
|
@staticmethod |
|
def prepare_payload(question:Question, |
|
verbose:bool=False, |
|
prepend:Union[dict, None]=None, |
|
model:str="gpt-4-vision-preview", |
|
max_tokens:int=1000, |
|
) -> dict: |
|
""" |
|
Args: |
|
question: List of question components |
|
verbose: if true, prints out the payload. |
|
prepend (optional): if not None it should be the "message" from the |
|
GPT output from the previous exchange. |
|
Returns: |
|
payload (dict) containing the json to be sent to GPT's API. |
|
|
|
""" |
|
question_dicts = question.get_json() |
|
print('Getting question_dicts fine.') |
|
|
|
for part in question_dicts: |
|
if part["type"]=="image_url": |
|
del part["image"] |
|
|
|
payload = [{"role": "user", |
|
"content": question_dicts |
|
}] |
|
if prepend is not None: |
|
payload = [prepend] + payload |
|
|
|
|
|
|
|
|
|
|
|
|
|
payload = { |
|
"model": model, |
|
"messages": payload, |
|
"max_tokens": max_tokens} |
|
return payload |
|
|
|
def run_once(self, question:Question, max_tokens=1000): |
|
print('Into gpt4v.py -> think') |
|
q = self.task.first_question(question) |
|
p_ans, ans, meta, p = self.rough_guess(q, max_tokens=max_tokens) |
|
return p_ans, ans, meta, p |
|
|
|
|
|
|
|
def run(self, question:Question, verbose:bool=False): |
|
""" Main running program |
|
""" |
|
logger.warning("DEPRECATED! Use the Agents class instead!") |
|
|
|
answers_history = [] |
|
questions_history = [] |
|
eval_history = [] |
|
|
|
first_q = self.task.first_question(question) |
|
p_ans, ans, meta, p = self.rough_guess(first_q) |
|
|
|
questions_history.append(question) |
|
answers_history.append(p_ans) |
|
latest_answer = p_ans |
|
|
|
if verbose: |
|
|
|
pass |
|
|
|
iteration = 0 |
|
|
|
while True: |
|
evaluation_answer = self.task.completed(question, latest_answer) |
|
eval_history.append(evaluation_answer) |
|
if verbose: |
|
|
|
pass |
|
|
|
if evaluation_answer.success(): |
|
break |
|
|
|
iteration += 1 |
|
if verbose: |
|
logger.info(f"start iteration {iteration} editing") |
|
next_question = self.task.next_question(questions_history, answers_history, eval_history) |
|
p_ans, ans, meta, p = self.rough_guess(next_question) |
|
|
|
answers_history.append(p_ans) |
|
latest_answer = p_ans |
|
if verbose: |
|
|
|
pass |
|
|
|
if verbose: |
|
|
|
pass |
|
return latest_answer, ans, meta, p |
|
|
|
|
|
|
|
def many_rough_guesses(self, num_threads:int, |
|
question:Question, max_tokens=1000, |
|
verbose=False, max_tries=1) -> List[Tuple[ParsedAnswer, str, dict, dict]]: |
|
""" |
|
Args: |
|
num_threads : number of independent threads. |
|
all other arguments are same as those of `rough_guess()` |
|
|
|
Returns |
|
List of elements, each element is a tuple following the |
|
return signature of `rough_guess()` |
|
""" |
|
|
|
p = self.prepare_payload(question, verbose=verbose, prepend=None, |
|
model=self.model, |
|
max_tokens=max_tokens) |
|
|
|
n_choices = num_threads |
|
|
|
ok = False |
|
reattempt = 0 |
|
while not ok: |
|
response, meta_data = self.ask(p, n_choices=n_choices) |
|
try: |
|
parsed_response = [self.task.answer_type.parser(r["content"]) for r in response] |
|
except GPTOutputParseException as e: |
|
|
|
pass |
|
|
|
reattempt += 1 |
|
if reattempt > max_tries: |
|
logger.error(f"max tries ({max_tries}) exceeded.") |
|
raise GPTMaxTriesExceededException |
|
|
|
logger.warning(f"Reattempt #{reattempt} querying LLM") |
|
continue |
|
ok = True |
|
|
|
return parsed_response, response, meta_data, p |
|
|
|
|
|
def rough_guess(self, question:Question, max_tokens=1000, verbose=False, |
|
max_tries=1, query_id:int=0) -> Tuple[ParsedAnswer, str, dict, dict]: |
|
""" |
|
Args: |
|
question |
|
max_tokens (int) : max tokens in return from |
|
verbose (bool) |
|
Returns: |
|
answer in the form of ParsedAnswer |
|
answer in the form of raw text response from LLM |
|
meta data of the response |
|
json payload sent to the LLM |
|
""" |
|
|
|
p = self.prepare_payload(question, verbose=verbose, prepend=None, |
|
model=self.model, |
|
max_tokens=max_tokens) |
|
|
|
print('Loading payload fine.') |
|
|
|
ok = False |
|
reattempt = 0 |
|
while not ok: |
|
response, meta_data = self.ask(p) |
|
response = response[0] |
|
try: |
|
parsed_response = self.task.answer_type.parser(response["content"]) |
|
except GPTOutputParseException as e: |
|
|
|
|
|
reattempt += 1 |
|
if reattempt > max_tries: |
|
logger.error(f"max tries ({max_tries}) exceeded.") |
|
raise GPTMaxTriesExceededException |
|
|
|
logger.warning(f"Reattempt #{reattempt} querying LLM") |
|
continue |
|
ok = True |
|
return parsed_response, response, meta_data, p |
|
|
|
|