|
import os |
|
from .common import TaskSpec, ParsedAnswer, Question |
|
from .exceptions import GPTOutputParseException, GPTMaxTriesExceededException |
|
import threading |
|
import base64 |
|
import io |
|
from typing import List, Tuple, Union |
|
from loguru import logger |
|
from google.generativeai.types import generation_types |
|
from copy import deepcopy |
|
import google.generativeai as genai |
|
import time |
|
import PIL |
|
|
|
class GeminiModel(object): |
|
def __init__(self, api_key:str, |
|
task:TaskSpec, |
|
model:str="gemini-pro-vision"): |
|
self.gemini_key:str = api_key |
|
self.task:TaskSpec = task |
|
self.model:str = model |
|
|
|
|
|
def ask(self, payload:dict, n_choices=1) -> Tuple[List[dict], List[dict]]: |
|
""" |
|
args: |
|
payload: json dictionary, prepared by `prepare_payload` |
|
""" |
|
|
|
def gemini_thread(idx, payload, results): |
|
|
|
mod_payload = payload |
|
|
|
config_instance = generation_types.GenerationConfig( |
|
max_output_tokens=payload["max_tokens"], |
|
) |
|
|
|
try: |
|
raw_response = client.generate_content( |
|
contents=payload["messages"], |
|
generation_config=config_instance |
|
) |
|
except Exception as e: |
|
raise e |
|
|
|
response = {'content' : raw_response.text} |
|
results[idx] = {"message": response, "metadata": raw_response} |
|
return |
|
|
|
genai.configure(api_key=self.gemini_key) |
|
client = genai.GenerativeModel(model_name=self.model, |
|
safety_settings= None, |
|
generation_config = None |
|
) |
|
|
|
assert n_choices >= 1 |
|
results = [None] * n_choices |
|
if n_choices > 1: |
|
gemini_jobs = [threading.Thread(target=gemini_thread, |
|
args=(idx, payload, results)) |
|
for idx in range(n_choices)] |
|
for job in gemini_jobs: |
|
job.start() |
|
for job in gemini_jobs: |
|
job.join() |
|
else: |
|
gemini_thread(0, payload, results) |
|
messages:List[dict] = [ res["message"] for res in results] |
|
metadata:List[dict] = [ res["metadata"] for res in results] |
|
return messages, metadata |
|
|
|
|
|
@staticmethod |
|
def prepare_payload(question:Question, |
|
max_tokens=1000, |
|
verbose:bool=False, |
|
prepend:Union[dict, None]=None, |
|
**kwargs |
|
) -> dict: |
|
|
|
strings = [] |
|
images = [] |
|
for el in question.get_json(save_local=True): |
|
if 'text' in el: |
|
strings.append(el['text']) |
|
elif 'image_url' in el: |
|
|
|
base64enc_image = el['image_url']['url'].split(',', 1)[1] |
|
base64_image_str = base64enc_image |
|
image_data = base64.b64decode(base64_image_str) |
|
image_data_io = io.BytesIO(image_data) |
|
|
|
|
|
pil_image = PIL.Image.open(image_data_io) |
|
|
|
images.append(pil_image) |
|
|
|
string_message = "\n".join(strings) |
|
messages = [string_message] |
|
|
|
for image in images: |
|
messages.append(image) |
|
|
|
payload = { |
|
"messages": messages, |
|
"max_tokens": max_tokens, |
|
} |
|
|
|
return payload |
|
|
|
|
|
def rough_guess(self, question:Question, max_tokens=1000, |
|
max_tries=1, query_id:int=0, |
|
verbose=False, |
|
**kwargs): |
|
|
|
p = self.prepare_payload(question, max_tokens = max_tokens, verbose=verbose, prepend=None, |
|
model=self.model) |
|
|
|
ok = False |
|
while not ok: |
|
response, meta_data = self.ask(p) |
|
response = response [0] |
|
try: |
|
parsed_response = self.task.answer_type.parser(response["content"]) |
|
except GPTOutputParseException as e: |
|
|
|
if not os.path.exists('errors/'): |
|
|
|
os.makedirs('errors/') |
|
|
|
error_saved = f'errors/{time.strftime("%Y-%m-%d-%H-%M-%S")}.json' |
|
with open(error_saved, "w") as f: |
|
f.write(p_ans.code) |
|
|
|
|
|
reattempt += 1 |
|
if reattempt > max_tries: |
|
logger.error(f"max tries ({max_tries}) exceeded.") |
|
raise GPTMaxTriesExceededException |
|
|
|
logger.warning(f"Reattempt #{reattempt} querying LLM") |
|
continue |
|
ok = True |
|
|
|
return parsed_response, response, meta_data, p |
|
|
|
|
|
def many_rough_guesses(self, num_threads:int, |
|
question:Question, max_tokens=1000, |
|
verbose=False, max_tries=1, |
|
) -> List[Tuple[ParsedAnswer, str, dict, dict]]: |
|
""" |
|
Args: |
|
num_threads : number of independent threads. |
|
all other arguments are same as those of `rough_guess()` |
|
|
|
Returns |
|
List of elements, each element is a tuple following the |
|
return signature of `rough_guess()` |
|
""" |
|
|
|
p = self.prepare_payload(question, max_tokens = max_tokens, verbose=verbose, prepend=None, |
|
model=self.model) |
|
|
|
|
|
n_choices = num_threads |
|
|
|
ok = False |
|
reattempt = 0 |
|
while not ok: |
|
response, meta_data = self.ask(p, n_choices=n_choices) |
|
try: |
|
parsed_response = [self.task.answer_type.parser(r["content"]) for r in response] |
|
except GPTOutputParseException as e: |
|
|
|
|
|
reattempt += 1 |
|
if reattempt > max_tries: |
|
logger.error(f"max tries ({max_tries}) exceeded.") |
|
raise GPTMaxTriesExceededException |
|
|
|
logger.warning(f"Reattempt #{reattempt} querying LLM") |
|
continue |
|
ok = True |
|
|
|
return parsed_response, response, meta_data, p |
|
|
|
def run_once(self, question:Question, max_tokens=1000, **kwargs): |
|
q = self.task.first_question(question) |
|
p_ans, ans, meta, p = self.rough_guess(q, max_tokens=max_tokens, **kwargs) |
|
return p_ans, ans, meta, p |