update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: torgo_xlsr_finetune-M04-2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# torgo_xlsr_finetune-M04-2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.2407
|
20 |
+
- Wer: 1.2835
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 1000
|
46 |
+
- num_epochs: 30
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
52 |
+
| 22.4872 | 0.88 | 500 | 3.2706 | 1.0 |
|
53 |
+
| 3.361 | 1.75 | 1000 | 2.8365 | 1.0 |
|
54 |
+
| 2.8532 | 2.63 | 1500 | 2.7444 | 1.0 |
|
55 |
+
| 2.5391 | 3.5 | 2000 | 2.1105 | 1.0824 |
|
56 |
+
| 1.6217 | 4.38 | 2500 | 1.7736 | 1.6424 |
|
57 |
+
| 1.1107 | 5.25 | 3000 | 1.5937 | 1.4918 |
|
58 |
+
| 0.8277 | 6.13 | 3500 | 1.5655 | 1.4729 |
|
59 |
+
| 0.6872 | 7.01 | 4000 | 1.6192 | 1.4671 |
|
60 |
+
| 0.5597 | 7.88 | 4500 | 1.6735 | 1.4176 |
|
61 |
+
| 0.4942 | 8.76 | 5000 | 1.5915 | 1.3847 |
|
62 |
+
| 0.4447 | 9.63 | 5500 | 1.8509 | 1.4506 |
|
63 |
+
| 0.3967 | 10.51 | 6000 | 1.7833 | 1.3929 |
|
64 |
+
| 0.3596 | 11.38 | 6500 | 2.0147 | 1.3776 |
|
65 |
+
| 0.3409 | 12.26 | 7000 | 1.8649 | 1.4 |
|
66 |
+
| 0.3169 | 13.13 | 7500 | 1.8252 | 1.3541 |
|
67 |
+
| 0.2962 | 14.01 | 8000 | 2.1108 | 1.3906 |
|
68 |
+
| 0.2934 | 14.89 | 8500 | 1.8004 | 1.3188 |
|
69 |
+
| 0.2564 | 15.76 | 9000 | 1.8681 | 1.3659 |
|
70 |
+
| 0.2447 | 16.64 | 9500 | 1.9341 | 1.3318 |
|
71 |
+
| 0.2248 | 17.51 | 10000 | 2.0251 | 1.3259 |
|
72 |
+
| 0.2234 | 18.39 | 10500 | 1.9982 | 1.2988 |
|
73 |
+
| 0.1955 | 19.26 | 11000 | 2.0277 | 1.3024 |
|
74 |
+
| 0.1882 | 20.14 | 11500 | 2.0001 | 1.2882 |
|
75 |
+
| 0.2022 | 21.02 | 12000 | 1.9842 | 1.2988 |
|
76 |
+
| 0.163 | 21.89 | 12500 | 1.9931 | 1.32 |
|
77 |
+
| 0.1732 | 22.77 | 13000 | 2.0577 | 1.2659 |
|
78 |
+
| 0.1522 | 23.64 | 13500 | 2.0511 | 1.2812 |
|
79 |
+
| 0.1367 | 24.52 | 14000 | 2.0308 | 1.2671 |
|
80 |
+
| 0.1393 | 25.39 | 14500 | 2.2392 | 1.2788 |
|
81 |
+
| 0.1407 | 26.27 | 15000 | 2.1329 | 1.2824 |
|
82 |
+
| 0.1244 | 27.15 | 15500 | 2.0721 | 1.2694 |
|
83 |
+
| 0.116 | 28.02 | 16000 | 2.1656 | 1.2824 |
|
84 |
+
| 0.125 | 28.9 | 16500 | 2.2338 | 1.2882 |
|
85 |
+
| 0.1063 | 29.77 | 17000 | 2.2407 | 1.2835 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.26.1
|
91 |
+
- Pytorch 1.13.1+cu116
|
92 |
+
- Datasets 1.18.3
|
93 |
+
- Tokenizers 0.13.2
|