Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.05 +/- 0.33
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a9a12703e7b4cc5b7eb1078f55f4b53bc95ebdc72312189f1d76a1b29e3d620
|
3 |
+
size 108046
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4c128c5820>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f4c128c6900>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1682349116429699631,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4Xi+PkMPETspmxU/4Xi+PkMPETspmxU/4Xi+PkMPETspmxU/4Xi+PkMPETspmxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAu8Ftv30Umz8f6py/fI9qv/ucNT8/DAI+7gqEPxHCNb85AJc/HfvOP5LDqT8BUsG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADheL4+Qw8ROymbFT+DuOg7iHpUuyyg0zvheL4+Qw8ROymbFT+DuOg7iHpUuyyg0zvheL4+Qw8ROymbFT+DuOg7iHpUuyyg0zvheL4+Qw8ROymbFT+DuOg7iHpUuyyg0zuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.37201598 0.00221343 0.5843988 ]\n [0.37201598 0.00221343 0.5843988 ]\n [0.37201598 0.00221343 0.5843988 ]\n [0.37201598 0.00221343 0.5843988 ]]",
|
38 |
+
"desired_goal": "[[-0.92873734 1.2115628 -1.2258948 ]\n [-0.9162519 0.7094266 0.12699984]\n [ 1.0315835 -0.70999247 1.1796943 ]\n [ 1.6170384 1.3262808 -1.5103151 ]]",
|
39 |
+
"observation": "[[ 0.37201598 0.00221343 0.5843988 0.00710207 -0.00324217 0.0064583 ]\n [ 0.37201598 0.00221343 0.5843988 0.00710207 -0.00324217 0.0064583 ]\n [ 0.37201598 0.00221343 0.5843988 0.00710207 -0.00324217 0.0064583 ]\n [ 0.37201598 0.00221343 0.5843988 0.00710207 -0.00324217 0.0064583 ]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWP+HPSpeMz2ZxAA+cxQQPeu1wT1lLgs9fXkSPnMsgL1eZGc+qufOvaGyAr1MWuQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.066405 0.04379097 0.12574996]\n [ 0.03517575 0.09458526 0.03397979]\n [ 0.14304157 -0.06258478 0.22596881]\n [-0.1010278 -0.03190864 0.11150035]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQQ5KmGn7+r+UhpRSlIwBbJRLMowBdJRHQKjiM814xDd1fZQoaAZoCWgPQwiazeMwmD/lv5SGlFKUaBVLMmgWR0Co4fYQBgeBdX2UKGgGaAloD0MITPxR1Jl71L+UhpRSlGgVSzJoFkdAqOG145cTrXV9lChoBmgJaA9DCFmGONbFbeS/lIaUUpRoFUsyaBZHQKjhdLpRoAZ1fZQoaAZoCWgPQwhckgN2Nfnrv5SGlFKUaBVLMmgWR0Co5Ds5n13/dX2UKGgGaAloD0MIo5I6AU0E8b+UhpRSlGgVSzJoFkdAqOP9f9gndHV9lChoBmgJaA9DCBZsI57sZva/lIaUUpRoFUsyaBZHQKjjvWsijcp1fZQoaAZoCWgPQwiQZ5dvfRjzv5SGlFKUaBVLMmgWR0Co43wMQVbidX2UKGgGaAloD0MINJwyN98I8r+UhpRSlGgVSzJoFkdAqOY/sHB1tHV9lChoBmgJaA9DCFNdwMsMG/e/lIaUUpRoFUsyaBZHQKjmAcxTKkl1fZQoaAZoCWgPQwjJHqFmSBXNv5SGlFKUaBVLMmgWR0Co5cGKqGUOdX2UKGgGaAloD0MICtY4m44A/b+UhpRSlGgVSzJoFkdAqOWATAWSEHV9lChoBmgJaA9DCB/axwp+G9a/lIaUUpRoFUsyaBZHQKjnlKuB+Wp1fZQoaAZoCWgPQwgRcXMqGYDov5SGlFKUaBVLMmgWR0Co51XdCVrzdX2UKGgGaAloD0MIJctJKH2h67+UhpRSlGgVSzJoFkdAqOcUh1Tzd3V9lChoBmgJaA9DCPJ8BtSbEf2/lIaUUpRoFUsyaBZHQKjm0jFhodx1fZQoaAZoCWgPQwiSlV8GY0Thv5SGlFKUaBVLMmgWR0Co6MMjFAE/dX2UKGgGaAloD0MImBWKdD8n8r+UhpRSlGgVSzJoFkdAqOiFId2gWnV9lChoBmgJaA9DCPjGEAAce+q/lIaUUpRoFUsyaBZHQKjoRNVR1ox1fZQoaAZoCWgPQwgYYB+dunLqv5SGlFKUaBVLMmgWR0Co6ALadtl7dX2UKGgGaAloD0MI78nDQq0p8L+UhpRSlGgVSzJoFkdAqOnw5R0lq3V9lChoBmgJaA9DCDPABdmy/OS/lIaUUpRoFUsyaBZHQKjpsh7E5yV1fZQoaAZoCWgPQwgR4PQu3o/dv5SGlFKUaBVLMmgWR0Co6XD15B1LdX2UKGgGaAloD0MI2xSPi2qR7L+UhpRSlGgVSzJoFkdAqOkuwiaAnXV9lChoBmgJaA9DCPHXZI16KADAlIaUUpRoFUsyaBZHQKjrQImgJ1J1fZQoaAZoCWgPQwgcmrLTD+ruv5SGlFKUaBVLMmgWR0Co6wHVXmvGdX2UKGgGaAloD0MIycnErYIY9b+UhpRSlGgVSzJoFkdAqOrAqkM1CXV9lChoBmgJaA9DCEIJM23/yvm/lIaUUpRoFUsyaBZHQKjqfmJWNm11fZQoaAZoCWgPQwjw+PauQV/vv5SGlFKUaBVLMmgWR0Co7GhsImgKdX2UKGgGaAloD0MI9fHQd7cy5L+UhpRSlGgVSzJoFkdAqOwppnHvMXV9lChoBmgJaA9DCOgzoN6Mmtu/lIaUUpRoFUsyaBZHQKjr6IKMNtt1fZQoaAZoCWgPQwhdwTbiyS7wv5SGlFKUaBVLMmgWR0Co66Y6fapQdX2UKGgGaAloD0MIbTgsDfxo8r+UhpRSlGgVSzJoFkdAqO2VcB2fTXV9lChoBmgJaA9DCMFXdOs1veS/lIaUUpRoFUsyaBZHQKjtVrylN111fZQoaAZoCWgPQwhZ3H9kOnTlv5SGlFKUaBVLMmgWR0Co7RWZAprldX2UKGgGaAloD0MISfPHtDbN8b+UhpRSlGgVSzJoFkdAqOzTNUwSJ3V9lChoBmgJaA9DCKPO3EPCt/K/lIaUUpRoFUsyaBZHQKjuxm16Vt51fZQoaAZoCWgPQwhMOPQWD2/0v5SGlFKUaBVLMmgWR0Co7ofBWPtEdX2UKGgGaAloD0MIxR1v8lv05b+UhpRSlGgVSzJoFkdAqO5GlO45LnV9lChoBmgJaA9DCFIpdjQOdfK/lIaUUpRoFUsyaBZHQKjuBE1EVnF1fZQoaAZoCWgPQwi1NSIYB9fxv5SGlFKUaBVLMmgWR0Co7+xTbWVedX2UKGgGaAloD0MI/TOD+MCO6b+UhpRSlGgVSzJoFkdAqO+tkrf+CXV9lChoBmgJaA9DCKxxNh0B3O6/lIaUUpRoFUsyaBZHQKjvbICEHt51fZQoaAZoCWgPQwgfZcQFoBH3v5SGlFKUaBVLMmgWR0Co7ypDeCTVdX2UKGgGaAloD0MIzo3pCUs82r+UhpRSlGgVSzJoFkdAqPEZA0Kqn3V9lChoBmgJaA9DCLZmKy/5H+m/lIaUUpRoFUsyaBZHQKjw2kE9t/F1fZQoaAZoCWgPQwhQHEC/71/sv5SGlFKUaBVLMmgWR0Co8JkmICU5dX2UKGgGaAloD0MIclKY9zhT8r+UhpRSlGgVSzJoFkdAqPBW717IDHV9lChoBmgJaA9DCNVamIV2zvK/lIaUUpRoFUsyaBZHQKjyRg2Ifr91fZQoaAZoCWgPQwiLNPEO8OTyv5SGlFKUaBVLMmgWR0Co8gdhy8zzdX2UKGgGaAloD0MIAfvo1JXP17+UhpRSlGgVSzJoFkdAqPHGTaCcw3V9lChoBmgJaA9DCBr5vOKpR+m/lIaUUpRoFUsyaBZHQKjxhC0ngHh1fZQoaAZoCWgPQwietdsuNNfnv5SGlFKUaBVLMmgWR0Co844t6HCXdX2UKGgGaAloD0MIhLndy31y2r+UhpRSlGgVSzJoFkdAqPNPcgyM1nV9lChoBmgJaA9DCELQ0aqWdPG/lIaUUpRoFUsyaBZHQKjzDlDF6zF1fZQoaAZoCWgPQwh/bJIf8Svwv5SGlFKUaBVLMmgWR0Co8swSSNfgdX2UKGgGaAloD0MIHomXp3NF9b+UhpRSlGgVSzJoFkdAqPS50W/JvHV9lChoBmgJaA9DCJjBGJEoNOq/lIaUUpRoFUsyaBZHQKj0ewSrYGt1fZQoaAZoCWgPQwgS+MPPfw/bv5SGlFKUaBVLMmgWR0Co9DnhS9/SdX2UKGgGaAloD0MINL+aAwRz3L+UhpRSlGgVSzJoFkdAqPP3gDRtxnV9lChoBmgJaA9DCKgZUkXxKuC/lIaUUpRoFUsyaBZHQKj15AHE/B51fZQoaAZoCWgPQwhkXHFxVO7iv5SGlFKUaBVLMmgWR0Co9aVhCtzTdX2UKGgGaAloD0MIrW71nPS+7r+UhpRSlGgVSzJoFkdAqPVkaGYa53V9lChoBmgJaA9DCFad1QJ7zOu/lIaUUpRoFUsyaBZHQKj1IfYjB2x1fZQoaAZoCWgPQwh/iA0WTlLsv5SGlFKUaBVLMmgWR0Co9xeKCQLedX2UKGgGaAloD0MINIY5QZsc4r+UhpRSlGgVSzJoFkdAqPbY4hllLHV9lChoBmgJaA9DCN0ostZQ6uO/lIaUUpRoFUsyaBZHQKj2l5sTFl11fZQoaAZoCWgPQwheL00R4HThv5SGlFKUaBVLMmgWR0Co9lU0m+j/dX2UKGgGaAloD0MIiGUzh6QW8L+UhpRSlGgVSzJoFkdAqPhLYbsF+3V9lChoBmgJaA9DCNoaEYyDy+m/lIaUUpRoFUsyaBZHQKj4DMcIZ651fZQoaAZoCWgPQwgP0egOYmfcv5SGlFKUaBVLMmgWR0Co98x9gF5fdX2UKGgGaAloD0MIeEfGavN/6L+UhpRSlGgVSzJoFkdAqPeLPSlWO3V9lChoBmgJaA9DCME6jh8qzfG/lIaUUpRoFUsyaBZHQKj5c2w3YL91fZQoaAZoCWgPQwhKQ41Cktnpv5SGlFKUaBVLMmgWR0Co+TTRQaaTdX2UKGgGaAloD0MI0T/BxYqa5r+UhpRSlGgVSzJoFkdAqPjztb9qDnV9lChoBmgJaA9DCFOSdTi6CvS/lIaUUpRoFUsyaBZHQKj4sWAwwkB1fZQoaAZoCWgPQwiEnWLVIIzxv5SGlFKUaBVLMmgWR0Co+prGrCFcdX2UKGgGaAloD0MIbr4R3bOu3r+UhpRSlGgVSzJoFkdAqPpcNnXd03V9lChoBmgJaA9DCBPulXmrLuy/lIaUUpRoFUsyaBZHQKj6Gyj59E11fZQoaAZoCWgPQwiAY8+ey9Txv5SGlFKUaBVLMmgWR0Co+djn3cpLdX2UKGgGaAloD0MIv7Z++s+a5L+UhpRSlGgVSzJoFkdAqPx78Nx2jnV9lChoBmgJaA9DCIY5QZscvu+/lIaUUpRoFUsyaBZHQKj8Pi0fHPx1fZQoaAZoCWgPQwgMO4xJf2/4v5SGlFKUaBVLMmgWR0Co+/3bM5fddX2UKGgGaAloD0MIHv8FggDZ87+UhpRSlGgVSzJoFkdAqPu8bxVhkXV9lChoBmgJaA9DCDeOWItPge6/lIaUUpRoFUsyaBZHQKj+Y6q814x1fZQoaAZoCWgPQwh+/KVFfRLyv5SGlFKUaBVLMmgWR0Co/iXZf2K3dX2UKGgGaAloD0MIA3rhzoUR77+UhpRSlGgVSzJoFkdAqP3lqtYCAHV9lChoBmgJaA9DCLMlqyLcZOy/lIaUUpRoFUsyaBZHQKj9pC4SYgJ1fZQoaAZoCWgPQwgQdLSqJR3sv5SGlFKUaBVLMmgWR0CpAGIMrmQsdX2UKGgGaAloD0MI7rCJzFzg6L+UhpRSlGgVSzJoFkdAqQAkMb3oLXV9lChoBmgJaA9DCOm12ViJeem/lIaUUpRoFUsyaBZHQKj/4//Nqxl1fZQoaAZoCWgPQwgF+dnIddPiv5SGlFKUaBVLMmgWR0Co/6J0wJw9dX2UKGgGaAloD0MIrDlAMEcP47+UhpRSlGgVSzJoFkdAqQJl+I/JNnV9lChoBmgJaA9DCFOzB1qBIee/lIaUUpRoFUsyaBZHQKkCKEbHZK51fZQoaAZoCWgPQwj4N2ivPp72v5SGlFKUaBVLMmgWR0CpAefYBeXzdX2UKGgGaAloD0MIJ4V5jzNN7b+UhpRSlGgVSzJoFkdAqQGmo1k1/HV9lChoBmgJaA9DCDdPdcjNMPi/lIaUUpRoFUsyaBZHQKkELgccU/R1fZQoaAZoCWgPQwjurx73rdbxv5SGlFKUaBVLMmgWR0CpA+87hegMdX2UKGgGaAloD0MI0F59PPTd7r+UhpRSlGgVSzJoFkdAqQOu32EkB3V9lChoBmgJaA9DCEn2CDVDKui/lIaUUpRoFUsyaBZHQKkDbGgi/wl1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13c7ad558f8a2960c9e9213db87bdbde1a24cf6f55926bd48b75f9bc5f8414c0
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62c7c366492ef47fc028f891cbc9c2026becf6c90274f67d6437c017d22ef21f
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4c128c5820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4c128c6900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682349116429699631, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4Xi+PkMPETspmxU/4Xi+PkMPETspmxU/4Xi+PkMPETspmxU/4Xi+PkMPETspmxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAu8Ftv30Umz8f6py/fI9qv/ucNT8/DAI+7gqEPxHCNb85AJc/HfvOP5LDqT8BUsG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADheL4+Qw8ROymbFT+DuOg7iHpUuyyg0zvheL4+Qw8ROymbFT+DuOg7iHpUuyyg0zvheL4+Qw8ROymbFT+DuOg7iHpUuyyg0zvheL4+Qw8ROymbFT+DuOg7iHpUuyyg0zuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37201598 0.00221343 0.5843988 ]\n [0.37201598 0.00221343 0.5843988 ]\n [0.37201598 0.00221343 0.5843988 ]\n [0.37201598 0.00221343 0.5843988 ]]", "desired_goal": "[[-0.92873734 1.2115628 -1.2258948 ]\n [-0.9162519 0.7094266 0.12699984]\n [ 1.0315835 -0.70999247 1.1796943 ]\n [ 1.6170384 1.3262808 -1.5103151 ]]", "observation": "[[ 0.37201598 0.00221343 0.5843988 0.00710207 -0.00324217 0.0064583 ]\n [ 0.37201598 0.00221343 0.5843988 0.00710207 -0.00324217 0.0064583 ]\n [ 0.37201598 0.00221343 0.5843988 0.00710207 -0.00324217 0.0064583 ]\n [ 0.37201598 0.00221343 0.5843988 0.00710207 -0.00324217 0.0064583 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWP+HPSpeMz2ZxAA+cxQQPeu1wT1lLgs9fXkSPnMsgL1eZGc+qufOvaGyAr1MWuQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.066405 0.04379097 0.12574996]\n [ 0.03517575 0.09458526 0.03397979]\n [ 0.14304157 -0.06258478 0.22596881]\n [-0.1010278 -0.03190864 0.11150035]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQQ5KmGn7+r+UhpRSlIwBbJRLMowBdJRHQKjiM814xDd1fZQoaAZoCWgPQwiazeMwmD/lv5SGlFKUaBVLMmgWR0Co4fYQBgeBdX2UKGgGaAloD0MITPxR1Jl71L+UhpRSlGgVSzJoFkdAqOG145cTrXV9lChoBmgJaA9DCFmGONbFbeS/lIaUUpRoFUsyaBZHQKjhdLpRoAZ1fZQoaAZoCWgPQwhckgN2Nfnrv5SGlFKUaBVLMmgWR0Co5Ds5n13/dX2UKGgGaAloD0MIo5I6AU0E8b+UhpRSlGgVSzJoFkdAqOP9f9gndHV9lChoBmgJaA9DCBZsI57sZva/lIaUUpRoFUsyaBZHQKjjvWsijcp1fZQoaAZoCWgPQwiQZ5dvfRjzv5SGlFKUaBVLMmgWR0Co43wMQVbidX2UKGgGaAloD0MINJwyN98I8r+UhpRSlGgVSzJoFkdAqOY/sHB1tHV9lChoBmgJaA9DCFNdwMsMG/e/lIaUUpRoFUsyaBZHQKjmAcxTKkl1fZQoaAZoCWgPQwjJHqFmSBXNv5SGlFKUaBVLMmgWR0Co5cGKqGUOdX2UKGgGaAloD0MICtY4m44A/b+UhpRSlGgVSzJoFkdAqOWATAWSEHV9lChoBmgJaA9DCB/axwp+G9a/lIaUUpRoFUsyaBZHQKjnlKuB+Wp1fZQoaAZoCWgPQwgRcXMqGYDov5SGlFKUaBVLMmgWR0Co51XdCVrzdX2UKGgGaAloD0MIJctJKH2h67+UhpRSlGgVSzJoFkdAqOcUh1Tzd3V9lChoBmgJaA9DCPJ8BtSbEf2/lIaUUpRoFUsyaBZHQKjm0jFhodx1fZQoaAZoCWgPQwiSlV8GY0Thv5SGlFKUaBVLMmgWR0Co6MMjFAE/dX2UKGgGaAloD0MImBWKdD8n8r+UhpRSlGgVSzJoFkdAqOiFId2gWnV9lChoBmgJaA9DCPjGEAAce+q/lIaUUpRoFUsyaBZHQKjoRNVR1ox1fZQoaAZoCWgPQwgYYB+dunLqv5SGlFKUaBVLMmgWR0Co6ALadtl7dX2UKGgGaAloD0MI78nDQq0p8L+UhpRSlGgVSzJoFkdAqOnw5R0lq3V9lChoBmgJaA9DCDPABdmy/OS/lIaUUpRoFUsyaBZHQKjpsh7E5yV1fZQoaAZoCWgPQwgR4PQu3o/dv5SGlFKUaBVLMmgWR0Co6XD15B1LdX2UKGgGaAloD0MI2xSPi2qR7L+UhpRSlGgVSzJoFkdAqOkuwiaAnXV9lChoBmgJaA9DCPHXZI16KADAlIaUUpRoFUsyaBZHQKjrQImgJ1J1fZQoaAZoCWgPQwgcmrLTD+ruv5SGlFKUaBVLMmgWR0Co6wHVXmvGdX2UKGgGaAloD0MIycnErYIY9b+UhpRSlGgVSzJoFkdAqOrAqkM1CXV9lChoBmgJaA9DCEIJM23/yvm/lIaUUpRoFUsyaBZHQKjqfmJWNm11fZQoaAZoCWgPQwjw+PauQV/vv5SGlFKUaBVLMmgWR0Co7GhsImgKdX2UKGgGaAloD0MI9fHQd7cy5L+UhpRSlGgVSzJoFkdAqOwppnHvMXV9lChoBmgJaA9DCOgzoN6Mmtu/lIaUUpRoFUsyaBZHQKjr6IKMNtt1fZQoaAZoCWgPQwhdwTbiyS7wv5SGlFKUaBVLMmgWR0Co66Y6fapQdX2UKGgGaAloD0MIbTgsDfxo8r+UhpRSlGgVSzJoFkdAqO2VcB2fTXV9lChoBmgJaA9DCMFXdOs1veS/lIaUUpRoFUsyaBZHQKjtVrylN111fZQoaAZoCWgPQwhZ3H9kOnTlv5SGlFKUaBVLMmgWR0Co7RWZAprldX2UKGgGaAloD0MISfPHtDbN8b+UhpRSlGgVSzJoFkdAqOzTNUwSJ3V9lChoBmgJaA9DCKPO3EPCt/K/lIaUUpRoFUsyaBZHQKjuxm16Vt51fZQoaAZoCWgPQwhMOPQWD2/0v5SGlFKUaBVLMmgWR0Co7ofBWPtEdX2UKGgGaAloD0MIxR1v8lv05b+UhpRSlGgVSzJoFkdAqO5GlO45LnV9lChoBmgJaA9DCFIpdjQOdfK/lIaUUpRoFUsyaBZHQKjuBE1EVnF1fZQoaAZoCWgPQwi1NSIYB9fxv5SGlFKUaBVLMmgWR0Co7+xTbWVedX2UKGgGaAloD0MI/TOD+MCO6b+UhpRSlGgVSzJoFkdAqO+tkrf+CXV9lChoBmgJaA9DCKxxNh0B3O6/lIaUUpRoFUsyaBZHQKjvbICEHt51fZQoaAZoCWgPQwgfZcQFoBH3v5SGlFKUaBVLMmgWR0Co7ypDeCTVdX2UKGgGaAloD0MIzo3pCUs82r+UhpRSlGgVSzJoFkdAqPEZA0Kqn3V9lChoBmgJaA9DCLZmKy/5H+m/lIaUUpRoFUsyaBZHQKjw2kE9t/F1fZQoaAZoCWgPQwhQHEC/71/sv5SGlFKUaBVLMmgWR0Co8JkmICU5dX2UKGgGaAloD0MIclKY9zhT8r+UhpRSlGgVSzJoFkdAqPBW717IDHV9lChoBmgJaA9DCNVamIV2zvK/lIaUUpRoFUsyaBZHQKjyRg2Ifr91fZQoaAZoCWgPQwiLNPEO8OTyv5SGlFKUaBVLMmgWR0Co8gdhy8zzdX2UKGgGaAloD0MIAfvo1JXP17+UhpRSlGgVSzJoFkdAqPHGTaCcw3V9lChoBmgJaA9DCBr5vOKpR+m/lIaUUpRoFUsyaBZHQKjxhC0ngHh1fZQoaAZoCWgPQwietdsuNNfnv5SGlFKUaBVLMmgWR0Co844t6HCXdX2UKGgGaAloD0MIhLndy31y2r+UhpRSlGgVSzJoFkdAqPNPcgyM1nV9lChoBmgJaA9DCELQ0aqWdPG/lIaUUpRoFUsyaBZHQKjzDlDF6zF1fZQoaAZoCWgPQwh/bJIf8Svwv5SGlFKUaBVLMmgWR0Co8swSSNfgdX2UKGgGaAloD0MIHomXp3NF9b+UhpRSlGgVSzJoFkdAqPS50W/JvHV9lChoBmgJaA9DCJjBGJEoNOq/lIaUUpRoFUsyaBZHQKj0ewSrYGt1fZQoaAZoCWgPQwgS+MPPfw/bv5SGlFKUaBVLMmgWR0Co9DnhS9/SdX2UKGgGaAloD0MINL+aAwRz3L+UhpRSlGgVSzJoFkdAqPP3gDRtxnV9lChoBmgJaA9DCKgZUkXxKuC/lIaUUpRoFUsyaBZHQKj15AHE/B51fZQoaAZoCWgPQwhkXHFxVO7iv5SGlFKUaBVLMmgWR0Co9aVhCtzTdX2UKGgGaAloD0MIrW71nPS+7r+UhpRSlGgVSzJoFkdAqPVkaGYa53V9lChoBmgJaA9DCFad1QJ7zOu/lIaUUpRoFUsyaBZHQKj1IfYjB2x1fZQoaAZoCWgPQwh/iA0WTlLsv5SGlFKUaBVLMmgWR0Co9xeKCQLedX2UKGgGaAloD0MINIY5QZsc4r+UhpRSlGgVSzJoFkdAqPbY4hllLHV9lChoBmgJaA9DCN0ostZQ6uO/lIaUUpRoFUsyaBZHQKj2l5sTFl11fZQoaAZoCWgPQwheL00R4HThv5SGlFKUaBVLMmgWR0Co9lU0m+j/dX2UKGgGaAloD0MIiGUzh6QW8L+UhpRSlGgVSzJoFkdAqPhLYbsF+3V9lChoBmgJaA9DCNoaEYyDy+m/lIaUUpRoFUsyaBZHQKj4DMcIZ651fZQoaAZoCWgPQwgP0egOYmfcv5SGlFKUaBVLMmgWR0Co98x9gF5fdX2UKGgGaAloD0MIeEfGavN/6L+UhpRSlGgVSzJoFkdAqPeLPSlWO3V9lChoBmgJaA9DCME6jh8qzfG/lIaUUpRoFUsyaBZHQKj5c2w3YL91fZQoaAZoCWgPQwhKQ41Cktnpv5SGlFKUaBVLMmgWR0Co+TTRQaaTdX2UKGgGaAloD0MI0T/BxYqa5r+UhpRSlGgVSzJoFkdAqPjztb9qDnV9lChoBmgJaA9DCFOSdTi6CvS/lIaUUpRoFUsyaBZHQKj4sWAwwkB1fZQoaAZoCWgPQwiEnWLVIIzxv5SGlFKUaBVLMmgWR0Co+prGrCFcdX2UKGgGaAloD0MIbr4R3bOu3r+UhpRSlGgVSzJoFkdAqPpcNnXd03V9lChoBmgJaA9DCBPulXmrLuy/lIaUUpRoFUsyaBZHQKj6Gyj59E11fZQoaAZoCWgPQwiAY8+ey9Txv5SGlFKUaBVLMmgWR0Co+djn3cpLdX2UKGgGaAloD0MIv7Z++s+a5L+UhpRSlGgVSzJoFkdAqPx78Nx2jnV9lChoBmgJaA9DCIY5QZscvu+/lIaUUpRoFUsyaBZHQKj8Pi0fHPx1fZQoaAZoCWgPQwgMO4xJf2/4v5SGlFKUaBVLMmgWR0Co+/3bM5fddX2UKGgGaAloD0MIHv8FggDZ87+UhpRSlGgVSzJoFkdAqPu8bxVhkXV9lChoBmgJaA9DCDeOWItPge6/lIaUUpRoFUsyaBZHQKj+Y6q814x1fZQoaAZoCWgPQwh+/KVFfRLyv5SGlFKUaBVLMmgWR0Co/iXZf2K3dX2UKGgGaAloD0MIA3rhzoUR77+UhpRSlGgVSzJoFkdAqP3lqtYCAHV9lChoBmgJaA9DCLMlqyLcZOy/lIaUUpRoFUsyaBZHQKj9pC4SYgJ1fZQoaAZoCWgPQwgQdLSqJR3sv5SGlFKUaBVLMmgWR0CpAGIMrmQsdX2UKGgGaAloD0MI7rCJzFzg6L+UhpRSlGgVSzJoFkdAqQAkMb3oLXV9lChoBmgJaA9DCOm12ViJeem/lIaUUpRoFUsyaBZHQKj/4//Nqxl1fZQoaAZoCWgPQwgF+dnIddPiv5SGlFKUaBVLMmgWR0Co/6J0wJw9dX2UKGgGaAloD0MIrDlAMEcP47+UhpRSlGgVSzJoFkdAqQJl+I/JNnV9lChoBmgJaA9DCFOzB1qBIee/lIaUUpRoFUsyaBZHQKkCKEbHZK51fZQoaAZoCWgPQwj4N2ivPp72v5SGlFKUaBVLMmgWR0CpAefYBeXzdX2UKGgGaAloD0MIJ4V5jzNN7b+UhpRSlGgVSzJoFkdAqQGmo1k1/HV9lChoBmgJaA9DCDdPdcjNMPi/lIaUUpRoFUsyaBZHQKkELgccU/R1fZQoaAZoCWgPQwjurx73rdbxv5SGlFKUaBVLMmgWR0CpA+87hegMdX2UKGgGaAloD0MI0F59PPTd7r+UhpRSlGgVSzJoFkdAqQOu32EkB3V9lChoBmgJaA9DCEn2CDVDKui/lIaUUpRoFUsyaBZHQKkDbGgi/wl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (341 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.0458438395289704, "std_reward": 0.3318830660092672, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-24T16:05:14.957074"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3dfcc2f049c1c889a8a90882e54129a2c219b766476f6b9aede9cf954b94349
|
3 |
+
size 2381
|