Update README.md
Browse files
README.md
CHANGED
@@ -1,51 +1,59 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
license_link: https://huggingface.co/microsoft/Florence-2-large-ft/resolve/main/LICENSE
|
4 |
pipeline_tag: image-text-to-text
|
5 |
tags:
|
6 |
- vision
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
# Florence-2
|
10 |
|
11 |
## Model Summary
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
+ [Florence-2 technical report](https://arxiv.org/abs/2311.06242).
|
19 |
-
+ [Jupyter Notebook for inference and visualization of Florence-2-large model](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
| Florence-2-large[[HF]](https://huggingface.co/microsoft/Florence-2-large) | 0.77B | Pretrained model with FLD-5B
|
25 |
-
| Florence-2-base-ft[[HF]](https://huggingface.co/microsoft/Florence-2-base-ft) | 0.23B | Finetuned model on a colletion of downstream tasks
|
26 |
-
| Florence-2-large-ft[[HF]](https://huggingface.co/microsoft/Florence-2-large-ft) | 0.77B | Finetuned model on a colletion of downstream tasks
|
27 |
|
28 |
## How to Get Started with the Model
|
29 |
|
30 |
Use the code below to get started with the model.
|
31 |
|
|
|
|
|
32 |
```python
|
33 |
import requests
|
34 |
-
|
35 |
from PIL import Image
|
36 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
37 |
-
|
38 |
-
|
39 |
-
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
40 |
-
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
41 |
-
|
42 |
prompt = "<OD>"
|
43 |
-
|
44 |
-
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
45 |
image = Image.open(requests.get(url, stream=True).raw)
|
46 |
-
|
47 |
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
48 |
-
|
49 |
generated_ids = model.generate(
|
50 |
input_ids=inputs["input_ids"],
|
51 |
pixel_values=inputs["pixel_values"],
|
@@ -54,203 +62,29 @@ generated_ids = model.generate(
|
|
54 |
num_beams=3
|
55 |
)
|
56 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
57 |
-
|
58 |
parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))
|
59 |
-
|
60 |
print(parsed_answer)
|
61 |
-
|
62 |
```
|
63 |
|
64 |
-
|
65 |
-
## Tasks
|
66 |
-
|
67 |
-
This model is capable of performing different tasks through changing the prompts.
|
68 |
-
|
69 |
-
First, let's define a function to run a prompt.
|
70 |
-
|
71 |
-
<details>
|
72 |
-
<summary> Click to expand </summary>
|
73 |
-
|
74 |
-
```python
|
75 |
-
import requests
|
76 |
-
|
77 |
-
from PIL import Image
|
78 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
79 |
-
|
80 |
-
|
81 |
-
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
82 |
-
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
83 |
-
|
84 |
-
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
85 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
86 |
-
|
87 |
-
def run_example(task_prompt, text_input=None):
|
88 |
-
if text_input is None:
|
89 |
-
prompt = task_prompt
|
90 |
-
else:
|
91 |
-
prompt = task_prompt + text_input
|
92 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
93 |
-
generated_ids = model.generate(
|
94 |
-
input_ids=inputs["input_ids"],
|
95 |
-
pixel_values=inputs["pixel_values"],
|
96 |
-
max_new_tokens=1024,
|
97 |
-
num_beams=3
|
98 |
-
)
|
99 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
100 |
-
|
101 |
-
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
102 |
-
|
103 |
-
print(parsed_answer)
|
104 |
-
```
|
105 |
-
</details>
|
106 |
-
|
107 |
-
Here are the tasks `Florence-2` could perform:
|
108 |
-
|
109 |
-
<details>
|
110 |
-
<summary> Click to expand </summary>
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
### Caption
|
115 |
-
```python
|
116 |
-
prompt = "<CAPTION>"
|
117 |
-
run_example(prompt)
|
118 |
-
```
|
119 |
-
|
120 |
-
### Detailed Caption
|
121 |
-
```python
|
122 |
-
prompt = "<DETAILED_CAPTION>"
|
123 |
-
run_example(prompt)
|
124 |
-
```
|
125 |
-
|
126 |
-
### More Detailed Caption
|
127 |
-
```python
|
128 |
-
prompt = "<MORE_DETAILED_CAPTION>"
|
129 |
-
run_example(prompt)
|
130 |
-
```
|
131 |
-
|
132 |
-
### Caption to Phrase Grounding
|
133 |
-
caption to phrase grounding task requires additional text input, i.e. caption.
|
134 |
-
|
135 |
-
Caption to phrase grounding results format:
|
136 |
-
{'\<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}}
|
137 |
-
```python
|
138 |
-
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
|
139 |
-
results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.")
|
140 |
-
```
|
141 |
-
|
142 |
-
### Object Detection
|
143 |
-
|
144 |
-
OD results format:
|
145 |
-
{'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...],
|
146 |
-
'labels': ['label1', 'label2', ...]} }
|
147 |
-
|
148 |
-
```python
|
149 |
-
prompt = "<OD>"
|
150 |
-
run_example(prompt)
|
151 |
-
```
|
152 |
-
|
153 |
-
### Dense Region Caption
|
154 |
-
Dense region caption results format:
|
155 |
-
{'\<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...],
|
156 |
-
'labels': ['label1', 'label2', ...]} }
|
157 |
-
```python
|
158 |
-
prompt = "<DENSE_REGION_CAPTION>"
|
159 |
-
run_example(prompt)
|
160 |
-
```
|
161 |
-
|
162 |
-
### Region proposal
|
163 |
-
Dense region caption results format:
|
164 |
-
{'\<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...],
|
165 |
-
'labels': ['', '', ...]}}
|
166 |
-
```python
|
167 |
-
prompt = "<REGION_PROPOSAL>"
|
168 |
-
run_example(prompt)
|
169 |
-
```
|
170 |
-
|
171 |
-
|
172 |
-
### OCR
|
173 |
-
|
174 |
-
```python
|
175 |
-
prompt = "<OCR>"
|
176 |
-
run_example(prompt)
|
177 |
-
```
|
178 |
-
|
179 |
-
### OCR with Region
|
180 |
-
OCR with region output format:
|
181 |
-
{'\<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}}
|
182 |
-
```python
|
183 |
-
prompt = "<OCR_WITH_REGION>"
|
184 |
-
run_example(prompt)
|
185 |
-
```
|
186 |
-
|
187 |
-
for More detailed examples, please refer to [notebook](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb)
|
188 |
-
</details>
|
189 |
-
|
190 |
-
# Benchmarks
|
191 |
-
|
192 |
-
## Florence-2 Zero-shot performance
|
193 |
-
|
194 |
-
The following table presents the zero-shot performance of generalist vision foundation models on image captioning and object detection evaluation tasks. These models have not been exposed to the training data of the evaluation tasks during their training phase.
|
195 |
-
|
196 |
-
| Method | #params | COCO Cap. test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | COCO Det. val2017 mAP |
|
197 |
-
|--------|---------|----------------------|------------------|--------------------|-----------------------|
|
198 |
-
| Flamingo | 80B | 84.3 | - | - | - |
|
199 |
-
| Florence-2-base| 0.23B | 133.0 | 118.7 | 70.1 | 34.7 |
|
200 |
-
| Florence-2-large| 0.77B | 135.6 | 120.8 | 72.8 | 37.5 |
|
201 |
-
|
202 |
-
|
203 |
-
The following table continues the comparison with performance on other vision-language evaluation tasks.
|
204 |
-
|
205 |
-
| Method | Flickr30k test R@1 | Refcoco val Accuracy | Refcoco test-A Accuracy | Refcoco test-B Accuracy | Refcoco+ val Accuracy | Refcoco+ test-A Accuracy | Refcoco+ test-B Accuracy | Refcocog val Accuracy | Refcocog test Accuracy | Refcoco RES val mIoU |
|
206 |
-
|--------|----------------------|----------------------|-------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------|------------------------|----------------------|
|
207 |
-
| Kosmos-2 | 78.7 | 52.3 | 57.4 | 47.3 | 45.5 | 50.7 | 42.2 | 60.6 | 61.7 | - |
|
208 |
-
| Florence-2-base | 83.6 | 53.9 | 58.4 | 49.7 | 51.5 | 56.4 | 47.9 | 66.3 | 65.1 | 34.6 |
|
209 |
-
| Florence-2-large | 84.4 | 56.3 | 61.6 | 51.4 | 53.6 | 57.9 | 49.9 | 68.0 | 67.0 | 35.8 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
## Florence-2 finetuned performance
|
214 |
-
|
215 |
-
We finetune Florence-2 models with a collection of downstream tasks, resulting two generalist models *Florence-2-base-ft* and *Florence-2-large-ft* that can conduct a wide range of downstream tasks.
|
216 |
-
|
217 |
-
The table below compares the performance of specialist and generalist models on various captioning and Visual Question Answering (VQA) tasks. Specialist models are fine-tuned specifically for each task, whereas generalist models are fine-tuned in a task-agnostic manner across all tasks. The symbol "▲" indicates the usage of external OCR as input.
|
218 |
-
|
219 |
-
| Method | # Params | COCO Caption Karpathy test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | VQAv2 test-dev Acc | TextVQA test-dev Acc | VizWiz VQA test-dev Acc |
|
220 |
-
|----------------|----------|-----------------------------------|------------------|--------------------|--------------------|----------------------|-------------------------|
|
221 |
-
| **Specialist Models** | | | | | | | |
|
222 |
-
| CoCa | 2.1B | 143.6 | 122.4 | - | 82.3 | - | - |
|
223 |
-
| BLIP-2 | 7.8B | 144.5 | 121.6 | - | 82.2 | - | - |
|
224 |
-
| GIT2 | 5.1B | 145.0 | 126.9 | 148.6 | 81.7 | 67.3 | 71.0 |
|
225 |
-
| Flamingo | 80B | 138.1 | - | - | 82.0 | 54.1 | 65.7 |
|
226 |
-
| PaLI | 17B | 149.1 | 127.0 | 160.0▲ | 84.3 | 58.8 / 73.1▲ | 71.6 / 74.4▲ |
|
227 |
-
| PaLI-X | 55B | 149.2 | 126.3 | 147.0 / 163.7▲ | 86.0 | 71.4 / 80.8▲ | 70.9 / 74.6▲ |
|
228 |
-
| **Generalist Models** | | | | | | | |
|
229 |
-
| Unified-IO | 2.9B | - | 100.0 | - | 77.9 | - | 57.4 |
|
230 |
-
| Florence-2-base-ft | 0.23B | 140.0 | 116.7 | 143.9 | 79.7 | 63.6 | 63.6 |
|
231 |
-
| Florence-2-large-ft | 0.77B | 143.3 | 124.9 | 151.1 | 81.7 | 73.5 | 72.6 |
|
232 |
-
|
233 |
-
|
234 |
-
| Method | # Params | COCO Det. val2017 mAP | Flickr30k test R@1 | RefCOCO val Accuracy | RefCOCO test-A Accuracy | RefCOCO test-B Accuracy | RefCOCO+ val Accuracy | RefCOCO+ test-A Accuracy | RefCOCO+ test-B Accuracy | RefCOCOg val Accuracy | RefCOCOg test Accuracy | RefCOCO RES val mIoU |
|
235 |
-
|----------------------|----------|-----------------------|--------------------|----------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------------------|-----------------------|------------------------|
|
236 |
-
| **Specialist Models** | | | | | | | | | | | | |
|
237 |
-
| SeqTR | - | - | - | 83.7 | 86.5 | 81.2 | 71.5 | 76.3 | 64.9 | 74.9 | 74.2 | - |
|
238 |
-
| PolyFormer | - | - | - | 90.4 | 92.9 | 87.2 | 85.0 | 89.8 | 78.0 | 85.8 | 85.9 | 76.9 |
|
239 |
-
| UNINEXT | 0.74B | 60.6 | - | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 | - |
|
240 |
-
| Ferret | 13B | - | - | 89.5 | 92.4 | 84.4 | 82.8 | 88.1 | 75.2 | 85.8 | 86.3 | - |
|
241 |
-
| **Generalist Models** | | | | | | | | | | | | |
|
242 |
-
| UniTAB | - | - | - | 88.6 | 91.1 | 83.8 | 81.0 | 85.4 | 71.6 | 84.6 | 84.7 | - |
|
243 |
-
| Florence-2-base-ft | 0.23B | 41.4 | 84.0 | 92.6 | 94.8 | 91.5 | 86.8 | 91.7 | 82.2 | 89.8 | 82.2 | 78.0 |
|
244 |
-
| Florence-2-large-ft| 0.77B | 43.4 | 85.2 | 93.4 | 95.3 | 92.0 | 88.3 | 92.9 | 83.6 | 91.2 | 91.7 | 80.5 |
|
245 |
-
|
246 |
|
247 |
## BibTex and citation info
|
248 |
|
249 |
```
|
250 |
-
@
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
}
|
256 |
```
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
|
|
3 |
pipeline_tag: image-text-to-text
|
4 |
tags:
|
5 |
- vision
|
6 |
+
- layout-analysis
|
7 |
+
- object-detection
|
8 |
+
datasets:
|
9 |
+
- ds4sd/DocLayNet-v1.1
|
10 |
+
base_model:
|
11 |
+
- microsoft/Florence-2-large-ft
|
12 |
---
|
13 |
|
14 |
+
# Florence-2-DocLayNet-Fixed
|
15 |
|
16 |
## Model Summary
|
17 |
|
18 |
+
We finetuned the Florence-2-large-ft [[HF]](https://huggingface.co/microsoft/Florence-2-large-ft) model using the [[DocLayNet-v1.1]](https://huggingface.co/datasets/ds4sd/DocLayNet-v1.1) dataset. To prevent the model from generating hallucinated class names, we re-mapped all class names to single tokens:
|
19 |
+
| Original Class Names | New Class Names |
|
20 |
+
|----------------------|-----------------|
|
21 |
+
| Caption | Cap |
|
22 |
+
| Footnote | Footnote |
|
23 |
+
| Formula | Math |
|
24 |
+
| List-item | List |
|
25 |
+
| Page-footer | Bottom |
|
26 |
+
| Page-header | Header |
|
27 |
+
| Picture | Picture |
|
28 |
+
| Section-header | Section |
|
29 |
+
| Table | Table |
|
30 |
+
| Text | Text |
|
31 |
+
| Title | Title |
|
32 |
|
33 |
+
By applying this simple change, we observed **7% improvement** of mAP50-95 score on the DocLayNet test set. The training and inference was also faster thanks to fewer tokens used by the class names.
|
34 |
|
35 |
+
From the mAP50-95 score, this model is far from SOTA on the DocLayNet test set (**70%**). Much smaller Yolo models (github.com/ppaanngggg/yolo-doclaynet)[https://github.com/ppaanngggg/yolo-doclaynet] have much better benchmark results (**~79%**). On the subset of scientific articles, this model performed on par with the best Yolo models (**87%**) in terms of mAP50-95.
|
|
|
|
|
36 |
|
37 |
+
However, after we performed some qualitative analysis (paper coming soon), we found that Florence-2 is much better at drawing bounding boxes with clean edges. Yolo models sometimes cut text in the middle or draw multiple bounding boxes on the same object. These behaviors are not seriously published in mAP50-95 but are painful to deal with in real-world use cases. When calculating the mAP scores, we had to manually set the confidence score as 1 for all Florence-2 output.
|
38 |
+
|
39 |
+
We release the finetuned model weights for the community to further investigate related research topics.
|
|
|
|
|
|
|
40 |
|
41 |
## How to Get Started with the Model
|
42 |
|
43 |
Use the code below to get started with the model.
|
44 |
|
45 |
+
For non-CUDA environments, please check out this post for a simple patch: [https://huggingface.co/microsoft/Florence-2-base/discussions/4](https://huggingface.co/microsoft/Florence-2-base/discussions/4)
|
46 |
+
|
47 |
```python
|
48 |
import requests
|
|
|
49 |
from PIL import Image
|
50 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
51 |
+
model = AutoModelForCausalLM.from_pretrained("yifeihu/Florence-2-DocLayNet-Fixed", trust_remote_code=True)
|
52 |
+
processor = AutoProcessor.from_pretrained("yifeihu/Florence-2-DocLayNet-Fixed", trust_remote_code=True)
|
|
|
|
|
|
|
53 |
prompt = "<OD>"
|
54 |
+
url = "https://huggingface.co/yifeihu/TF-ID-base/resolve/main/arxiv_2305_10853_5.png?download=true"
|
|
|
55 |
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
56 |
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
|
|
57 |
generated_ids = model.generate(
|
58 |
input_ids=inputs["input_ids"],
|
59 |
pixel_values=inputs["pixel_values"],
|
|
|
62 |
num_beams=3
|
63 |
)
|
64 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
|
|
65 |
parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))
|
|
|
66 |
print(parsed_answer)
|
|
|
67 |
```
|
68 |
|
69 |
+
To visualize the results, see [this tutorial notebook](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-florence-2-on-detection-dataset.ipynb) for more details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
## BibTex and citation info
|
72 |
|
73 |
```
|
74 |
+
@misc{TF-ID,
|
75 |
+
author = {Yifei Hu},
|
76 |
+
title = {TF-ID: Table/Figure IDentifier for academic papers},
|
77 |
+
year = {2024},
|
78 |
+
publisher = {GitHub},
|
79 |
+
journal = {GitHub repository},
|
80 |
+
howpublished = {\url{https://github.com/ai8hyf/TF-ID}},
|
81 |
+
}
|
82 |
+
|
83 |
+
@article{doclaynet2022,
|
84 |
+
title = {DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis},
|
85 |
+
doi = {10.1145/3534678.353904},
|
86 |
+
url = {https://arxiv.org/abs/2206.01062},
|
87 |
+
author = {Pfitzmann, Birgit and Auer, Christoph and Dolfi, Michele and Nassar, Ahmed S and Staar, Peter W J},
|
88 |
+
year = {2022}
|
89 |
}
|
90 |
```
|