Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Aligned Diffusion Model via DPO
|
2 |
+
|
3 |
+
Diffusion Model Aligned with thef following reward model and DPO algorithm
|
4 |
+
```
|
5 |
+
close-sourced vlm: claude3-opus gemini-1.5 gpt-4o gpt-4v
|
6 |
+
open-sourced vlm: internvl-1.5
|
7 |
+
score model: hps-2.1
|
8 |
+
```
|
9 |
+
|
10 |
+
## How to Use
|
11 |
+
|
12 |
+
You can load the model and perform inference as follows:
|
13 |
+
```python
|
14 |
+
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
|
15 |
+
|
16 |
+
pretrained_model_name = "runwayml/stable-diffusion-v1-5"
|
17 |
+
|
18 |
+
dpo_unet = UNet2DConditionModel.from_pretrained(
|
19 |
+
"path/to/checkpoint",
|
20 |
+
subfolder='unet',
|
21 |
+
torch_dtype=torch.float16
|
22 |
+
).to('cuda')
|
23 |
+
|
24 |
+
pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name, torch_dtype=torch.float16)
|
25 |
+
pipeline = pipeline.to('cuda')
|
26 |
+
pipeline.safety_checker = None
|
27 |
+
pipeline.unet = dpo_unet
|
28 |
+
|
29 |
+
generator = torch.Generator(device='cuda')
|
30 |
+
generator = generator.manual_seed(1)
|
31 |
+
|
32 |
+
prompt = "a pink flower"
|
33 |
+
|
34 |
+
image = pipeline(prompt=prompt, generator=generator, guidance_scale=gs).images[0]
|
35 |
+
|
36 |
+
```
|