|
import math |
|
|
|
import gradio as gr |
|
import modules.scripts as scripts |
|
from modules import deepbooru, images, processing, shared |
|
from modules.processing import Processed |
|
from modules.shared import opts, state |
|
|
|
|
|
class Script(scripts.Script): |
|
def title(self): |
|
return "Loopback" |
|
|
|
def show(self, is_img2img): |
|
return is_img2img |
|
|
|
def ui(self, is_img2img): |
|
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops")) |
|
final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength")) |
|
denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear") |
|
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None") |
|
|
|
return [loops, final_denoising_strength, denoising_curve, append_interrogation] |
|
|
|
def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation): |
|
processing.fix_seed(p) |
|
batch_count = p.n_iter |
|
p.extra_generation_params = { |
|
"Final denoising strength": final_denoising_strength, |
|
"Denoising curve": denoising_curve |
|
} |
|
|
|
p.batch_size = 1 |
|
p.n_iter = 1 |
|
|
|
info = None |
|
initial_seed = None |
|
initial_info = None |
|
initial_denoising_strength = p.denoising_strength |
|
|
|
grids = [] |
|
all_images = [] |
|
original_init_image = p.init_images |
|
original_prompt = p.prompt |
|
original_inpainting_fill = p.inpainting_fill |
|
state.job_count = loops * batch_count |
|
|
|
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])] |
|
|
|
def calculate_denoising_strength(loop): |
|
strength = initial_denoising_strength |
|
|
|
if loops == 1: |
|
return strength |
|
|
|
progress = loop / (loops - 1) |
|
if denoising_curve == "Aggressive": |
|
strength = math.sin((progress) * math.pi * 0.5) |
|
elif denoising_curve == "Lazy": |
|
strength = 1 - math.cos((progress) * math.pi * 0.5) |
|
else: |
|
strength = progress |
|
|
|
change = (final_denoising_strength - initial_denoising_strength) * strength |
|
return initial_denoising_strength + change |
|
|
|
history = [] |
|
|
|
for n in range(batch_count): |
|
|
|
p.init_images = original_init_image |
|
|
|
|
|
p.denoising_strength = initial_denoising_strength |
|
|
|
last_image = None |
|
|
|
for i in range(loops): |
|
p.n_iter = 1 |
|
p.batch_size = 1 |
|
p.do_not_save_grid = True |
|
|
|
if opts.img2img_color_correction: |
|
p.color_corrections = initial_color_corrections |
|
|
|
if append_interrogation != "None": |
|
p.prompt = f"{original_prompt}, " if original_prompt else "" |
|
if append_interrogation == "CLIP": |
|
p.prompt += shared.interrogator.interrogate(p.init_images[0]) |
|
elif append_interrogation == "DeepBooru": |
|
p.prompt += deepbooru.model.tag(p.init_images[0]) |
|
|
|
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}" |
|
|
|
processed = processing.process_images(p) |
|
|
|
|
|
if state.interrupted: |
|
break |
|
|
|
if initial_seed is None: |
|
initial_seed = processed.seed |
|
initial_info = processed.info |
|
|
|
p.seed = processed.seed + 1 |
|
p.denoising_strength = calculate_denoising_strength(i + 1) |
|
|
|
if state.skipped: |
|
break |
|
|
|
last_image = processed.images[0] |
|
p.init_images = [last_image] |
|
p.inpainting_fill = 1 |
|
|
|
if batch_count == 1: |
|
history.append(last_image) |
|
all_images.append(last_image) |
|
|
|
if batch_count > 1 and not state.skipped and not state.interrupted: |
|
history.append(last_image) |
|
all_images.append(last_image) |
|
|
|
p.inpainting_fill = original_inpainting_fill |
|
|
|
if state.interrupted: |
|
break |
|
|
|
if len(history) > 1: |
|
grid = images.image_grid(history, rows=1) |
|
if opts.grid_save: |
|
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p) |
|
|
|
if opts.return_grid: |
|
grids.append(grid) |
|
|
|
all_images = grids + all_images |
|
|
|
processed = Processed(p, all_images, initial_seed, initial_info) |
|
|
|
return processed |
|
|