|
import html |
|
|
|
import gradio as gr |
|
|
|
import modules.textual_inversion.textual_inversion |
|
import modules.textual_inversion.preprocess |
|
from modules import sd_hijack, shared |
|
|
|
|
|
def create_embedding(name, initialization_text, nvpt, overwrite_old): |
|
filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, overwrite_old, init_text=initialization_text) |
|
|
|
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() |
|
|
|
return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", "" |
|
|
|
|
|
def preprocess(*args): |
|
modules.textual_inversion.preprocess.preprocess(*args) |
|
|
|
return f"Preprocessing {'interrupted' if shared.state.interrupted else 'finished'}.", "" |
|
|
|
|
|
def train_embedding(*args): |
|
|
|
assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible' |
|
|
|
apply_optimizations = shared.opts.training_xattention_optimizations |
|
try: |
|
if not apply_optimizations: |
|
sd_hijack.undo_optimizations() |
|
|
|
embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args) |
|
|
|
res = f""" |
|
Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps. |
|
Embedding saved to {html.escape(filename)} |
|
""" |
|
return res, "" |
|
except Exception: |
|
raise |
|
finally: |
|
if not apply_optimizations: |
|
sd_hijack.apply_optimizations() |
|
|
|
|