|
import re |
|
|
|
import torch |
|
import gradio as gr |
|
from fastapi import FastAPI |
|
|
|
import lora |
|
import extra_networks_lora |
|
import ui_extra_networks_lora |
|
from modules import script_callbacks, ui_extra_networks, extra_networks, shared |
|
|
|
def unload(): |
|
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora |
|
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora |
|
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora |
|
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora |
|
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora |
|
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora |
|
|
|
|
|
def before_ui(): |
|
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora()) |
|
extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora()) |
|
|
|
|
|
if not hasattr(torch.nn, 'Linear_forward_before_lora'): |
|
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward |
|
|
|
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'): |
|
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict |
|
|
|
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'): |
|
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward |
|
|
|
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'): |
|
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict |
|
|
|
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'): |
|
torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward |
|
|
|
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'): |
|
torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict |
|
|
|
torch.nn.Linear.forward = lora.lora_Linear_forward |
|
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict |
|
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward |
|
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict |
|
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward |
|
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict |
|
|
|
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules) |
|
script_callbacks.on_script_unloaded(unload) |
|
script_callbacks.on_before_ui(before_ui) |
|
script_callbacks.on_infotext_pasted(lora.infotext_pasted) |
|
|
|
|
|
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { |
|
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras), |
|
"lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}), |
|
"lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"), |
|
})) |
|
|
|
|
|
shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), { |
|
"lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"), |
|
})) |
|
|
|
|
|
def create_lora_json(obj: lora.LoraOnDisk): |
|
return { |
|
"name": obj.name, |
|
"alias": obj.alias, |
|
"path": obj.filename, |
|
"metadata": obj.metadata, |
|
} |
|
|
|
|
|
def api_loras(_: gr.Blocks, app: FastAPI): |
|
@app.get("/sdapi/v1/loras") |
|
async def get_loras(): |
|
return [create_lora_json(obj) for obj in lora.available_loras.values()] |
|
|
|
@app.post("/sdapi/v1/refresh-loras") |
|
async def refresh_loras(): |
|
return lora.list_available_loras() |
|
|
|
|
|
script_callbacks.on_app_started(api_loras) |
|
|
|
re_lora = re.compile("<lora:([^:]+):") |
|
|
|
|
|
def infotext_pasted(infotext, d): |
|
hashes = d.get("Lora hashes") |
|
if not hashes: |
|
return |
|
|
|
hashes = [x.strip().split(':', 1) for x in hashes.split(",")] |
|
hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes} |
|
|
|
def lora_replacement(m): |
|
alias = m.group(1) |
|
shorthash = hashes.get(alias) |
|
if shorthash is None: |
|
return m.group(0) |
|
|
|
lora_on_disk = lora.available_lora_hash_lookup.get(shorthash) |
|
if lora_on_disk is None: |
|
return m.group(0) |
|
|
|
return f'<lora:{lora_on_disk.get_alias()}:' |
|
|
|
d["Prompt"] = re.sub(re_lora, lora_replacement, d["Prompt"]) |
|
|
|
|
|
script_callbacks.on_infotext_pasted(infotext_pasted) |
|
|