yesbut commited on
Commit
ff38e48
·
verified ·
1 Parent(s): fd09b4e

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. replay.mp4 +2 -2
  3. sf_log.txt +407 -0
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 9.98 +/- 5.84
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 12.26 +/- 5.99
19
  name: mean_reward
20
  verified: false
21
  ---
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ac48d78498e2b2a42331fcdd00c0d1dd01aace0dc5b51db0acd0901ab927f100
3
- size 19869024
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91ff73cbdab78911726578b41cb02674b1fbc3f59ba92cbaaf2016bc4f906cc8
3
+ size 23924280
sf_log.txt CHANGED
@@ -1040,3 +1040,410 @@ main_loop: 976.4160
1040
  [2025-01-22 16:37:34,885][00571] Avg episode rewards: #0: 23.982, true rewards: #0: 9.982
1041
  [2025-01-22 16:37:34,887][00571] Avg episode reward: 23.982, avg true_objective: 9.982
1042
  [2025-01-22 16:38:35,236][00571] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040
  [2025-01-22 16:37:34,885][00571] Avg episode rewards: #0: 23.982, true rewards: #0: 9.982
1041
  [2025-01-22 16:37:34,887][00571] Avg episode reward: 23.982, avg true_objective: 9.982
1042
  [2025-01-22 16:38:35,236][00571] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1043
+ [2025-01-22 16:38:41,010][00571] The model has been pushed to https://huggingface.co/yesbut/rl_course_vizdoom_health_gathering_supreme
1044
+ [2025-01-22 16:39:23,351][00571] Loading legacy config file train_dir/doom_health_gathering_supreme_2222/cfg.json instead of train_dir/doom_health_gathering_supreme_2222/config.json
1045
+ [2025-01-22 16:39:23,353][00571] Loading existing experiment configuration from train_dir/doom_health_gathering_supreme_2222/config.json
1046
+ [2025-01-22 16:39:23,354][00571] Overriding arg 'experiment' with value 'doom_health_gathering_supreme_2222' passed from command line
1047
+ [2025-01-22 16:39:23,355][00571] Overriding arg 'train_dir' with value 'train_dir' passed from command line
1048
+ [2025-01-22 16:39:23,357][00571] Overriding arg 'num_workers' with value 1 passed from command line
1049
+ [2025-01-22 16:39:23,358][00571] Adding new argument 'lr_adaptive_min'=1e-06 that is not in the saved config file!
1050
+ [2025-01-22 16:39:23,360][00571] Adding new argument 'lr_adaptive_max'=0.01 that is not in the saved config file!
1051
+ [2025-01-22 16:39:23,362][00571] Adding new argument 'env_gpu_observations'=True that is not in the saved config file!
1052
+ [2025-01-22 16:39:23,363][00571] Adding new argument 'no_render'=True that is not in the saved config file!
1053
+ [2025-01-22 16:39:23,364][00571] Adding new argument 'save_video'=True that is not in the saved config file!
1054
+ [2025-01-22 16:39:23,366][00571] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1055
+ [2025-01-22 16:39:23,367][00571] Adding new argument 'video_name'=None that is not in the saved config file!
1056
+ [2025-01-22 16:39:23,368][00571] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
1057
+ [2025-01-22 16:39:23,371][00571] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1058
+ [2025-01-22 16:39:23,374][00571] Adding new argument 'push_to_hub'=False that is not in the saved config file!
1059
+ [2025-01-22 16:39:23,375][00571] Adding new argument 'hf_repository'=None that is not in the saved config file!
1060
+ [2025-01-22 16:39:23,386][00571] Adding new argument 'policy_index'=0 that is not in the saved config file!
1061
+ [2025-01-22 16:39:23,387][00571] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1062
+ [2025-01-22 16:39:23,388][00571] Adding new argument 'train_script'=None that is not in the saved config file!
1063
+ [2025-01-22 16:39:23,391][00571] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1064
+ [2025-01-22 16:39:23,392][00571] Using frameskip 1 and render_action_repeat=4 for evaluation
1065
+ [2025-01-22 16:39:23,417][00571] RunningMeanStd input shape: (3, 72, 128)
1066
+ [2025-01-22 16:39:23,420][00571] RunningMeanStd input shape: (1,)
1067
+ [2025-01-22 16:39:23,430][00571] ConvEncoder: input_channels=3
1068
+ [2025-01-22 16:39:23,473][00571] Conv encoder output size: 512
1069
+ [2025-01-22 16:39:23,475][00571] Policy head output size: 512
1070
+ [2025-01-22 16:39:23,496][00571] Loading state from checkpoint train_dir/doom_health_gathering_supreme_2222/checkpoint_p0/checkpoint_000539850_4422451200.pth...
1071
+ [2025-01-22 16:39:23,957][00571] Num frames 100...
1072
+ [2025-01-22 16:39:24,081][00571] Num frames 200...
1073
+ [2025-01-22 16:39:24,216][00571] Num frames 300...
1074
+ [2025-01-22 16:39:24,343][00571] Num frames 400...
1075
+ [2025-01-22 16:39:24,469][00571] Num frames 500...
1076
+ [2025-01-22 16:39:24,597][00571] Num frames 600...
1077
+ [2025-01-22 16:39:24,727][00571] Num frames 700...
1078
+ [2025-01-22 16:39:24,852][00571] Num frames 800...
1079
+ [2025-01-22 16:39:24,975][00571] Num frames 900...
1080
+ [2025-01-22 16:39:25,099][00571] Num frames 1000...
1081
+ [2025-01-22 16:39:25,233][00571] Num frames 1100...
1082
+ [2025-01-22 16:39:25,358][00571] Num frames 1200...
1083
+ [2025-01-22 16:39:25,484][00571] Num frames 1300...
1084
+ [2025-01-22 16:39:25,615][00571] Num frames 1400...
1085
+ [2025-01-22 16:39:25,751][00571] Num frames 1500...
1086
+ [2025-01-22 16:39:25,875][00571] Num frames 1600...
1087
+ [2025-01-22 16:39:26,008][00571] Num frames 1700...
1088
+ [2025-01-22 16:39:26,136][00571] Num frames 1800...
1089
+ [2025-01-22 16:39:26,273][00571] Num frames 1900...
1090
+ [2025-01-22 16:39:26,400][00571] Num frames 2000...
1091
+ [2025-01-22 16:39:26,534][00571] Num frames 2100...
1092
+ [2025-01-22 16:39:26,586][00571] Avg episode rewards: #0: 59.999, true rewards: #0: 21.000
1093
+ [2025-01-22 16:39:26,588][00571] Avg episode reward: 59.999, avg true_objective: 21.000
1094
+ [2025-01-22 16:39:26,719][00571] Num frames 2200...
1095
+ [2025-01-22 16:39:26,844][00571] Num frames 2300...
1096
+ [2025-01-22 16:39:26,969][00571] Num frames 2400...
1097
+ [2025-01-22 16:39:27,096][00571] Num frames 2500...
1098
+ [2025-01-22 16:39:27,223][00571] Num frames 2600...
1099
+ [2025-01-22 16:39:27,357][00571] Num frames 2700...
1100
+ [2025-01-22 16:39:27,484][00571] Num frames 2800...
1101
+ [2025-01-22 16:39:27,610][00571] Num frames 2900...
1102
+ [2025-01-22 16:39:27,740][00571] Num frames 3000...
1103
+ [2025-01-22 16:39:27,863][00571] Num frames 3100...
1104
+ [2025-01-22 16:39:27,989][00571] Num frames 3200...
1105
+ [2025-01-22 16:39:28,113][00571] Num frames 3300...
1106
+ [2025-01-22 16:39:28,238][00571] Num frames 3400...
1107
+ [2025-01-22 16:39:28,368][00571] Num frames 3500...
1108
+ [2025-01-22 16:39:28,495][00571] Num frames 3600...
1109
+ [2025-01-22 16:39:28,621][00571] Num frames 3700...
1110
+ [2025-01-22 16:39:28,766][00571] Avg episode rewards: #0: 54.319, true rewards: #0: 18.820
1111
+ [2025-01-22 16:39:28,768][00571] Avg episode reward: 54.319, avg true_objective: 18.820
1112
+ [2025-01-22 16:39:28,817][00571] Num frames 3800...
1113
+ [2025-01-22 16:39:28,941][00571] Num frames 3900...
1114
+ [2025-01-22 16:39:29,066][00571] Num frames 4000...
1115
+ [2025-01-22 16:39:29,191][00571] Num frames 4100...
1116
+ [2025-01-22 16:39:29,323][00571] Num frames 4200...
1117
+ [2025-01-22 16:39:29,448][00571] Num frames 4300...
1118
+ [2025-01-22 16:39:29,575][00571] Num frames 4400...
1119
+ [2025-01-22 16:39:29,706][00571] Num frames 4500...
1120
+ [2025-01-22 16:39:29,844][00571] Num frames 4600...
1121
+ [2025-01-22 16:39:29,972][00571] Num frames 4700...
1122
+ [2025-01-22 16:39:30,098][00571] Num frames 4800...
1123
+ [2025-01-22 16:39:30,234][00571] Num frames 4900...
1124
+ [2025-01-22 16:39:30,377][00571] Num frames 5000...
1125
+ [2025-01-22 16:39:30,525][00571] Num frames 5100...
1126
+ [2025-01-22 16:39:30,715][00571] Num frames 5200...
1127
+ [2025-01-22 16:39:30,898][00571] Num frames 5300...
1128
+ [2025-01-22 16:39:31,071][00571] Num frames 5400...
1129
+ [2025-01-22 16:39:31,242][00571] Num frames 5500...
1130
+ [2025-01-22 16:39:31,420][00571] Num frames 5600...
1131
+ [2025-01-22 16:39:31,592][00571] Num frames 5700...
1132
+ [2025-01-22 16:39:31,759][00571] Num frames 5800...
1133
+ [2025-01-22 16:39:31,925][00571] Avg episode rewards: #0: 59.212, true rewards: #0: 19.547
1134
+ [2025-01-22 16:39:31,927][00571] Avg episode reward: 59.212, avg true_objective: 19.547
1135
+ [2025-01-22 16:39:31,994][00571] Num frames 5900...
1136
+ [2025-01-22 16:39:32,169][00571] Num frames 6000...
1137
+ [2025-01-22 16:39:32,346][00571] Num frames 6100...
1138
+ [2025-01-22 16:39:32,555][00571] Num frames 6200...
1139
+ [2025-01-22 16:39:32,743][00571] Num frames 6300...
1140
+ [2025-01-22 16:39:32,923][00571] Num frames 6400...
1141
+ [2025-01-22 16:39:33,089][00571] Num frames 6500...
1142
+ [2025-01-22 16:39:33,215][00571] Num frames 6600...
1143
+ [2025-01-22 16:39:33,342][00571] Num frames 6700...
1144
+ [2025-01-22 16:39:33,476][00571] Num frames 6800...
1145
+ [2025-01-22 16:39:33,602][00571] Num frames 6900...
1146
+ [2025-01-22 16:39:33,738][00571] Num frames 7000...
1147
+ [2025-01-22 16:39:33,864][00571] Num frames 7100...
1148
+ [2025-01-22 16:39:33,987][00571] Num frames 7200...
1149
+ [2025-01-22 16:39:34,111][00571] Num frames 7300...
1150
+ [2025-01-22 16:39:34,235][00571] Num frames 7400...
1151
+ [2025-01-22 16:39:34,357][00571] Num frames 7500...
1152
+ [2025-01-22 16:39:34,493][00571] Num frames 7600...
1153
+ [2025-01-22 16:39:34,633][00571] Num frames 7700...
1154
+ [2025-01-22 16:39:34,770][00571] Num frames 7800...
1155
+ [2025-01-22 16:39:34,896][00571] Num frames 7900...
1156
+ [2025-01-22 16:39:35,033][00571] Avg episode rewards: #0: 60.159, true rewards: #0: 19.910
1157
+ [2025-01-22 16:39:35,034][00571] Avg episode reward: 60.159, avg true_objective: 19.910
1158
+ [2025-01-22 16:39:35,082][00571] Num frames 8000...
1159
+ [2025-01-22 16:39:35,204][00571] Num frames 8100...
1160
+ [2025-01-22 16:39:35,328][00571] Num frames 8200...
1161
+ [2025-01-22 16:39:35,456][00571] Num frames 8300...
1162
+ [2025-01-22 16:39:35,593][00571] Num frames 8400...
1163
+ [2025-01-22 16:39:35,727][00571] Num frames 8500...
1164
+ [2025-01-22 16:39:35,856][00571] Num frames 8600...
1165
+ [2025-01-22 16:39:35,986][00571] Num frames 8700...
1166
+ [2025-01-22 16:39:36,119][00571] Num frames 8800...
1167
+ [2025-01-22 16:39:36,248][00571] Num frames 8900...
1168
+ [2025-01-22 16:39:36,372][00571] Num frames 9000...
1169
+ [2025-01-22 16:39:36,502][00571] Num frames 9100...
1170
+ [2025-01-22 16:39:36,640][00571] Num frames 9200...
1171
+ [2025-01-22 16:39:36,773][00571] Num frames 9300...
1172
+ [2025-01-22 16:39:36,898][00571] Num frames 9400...
1173
+ [2025-01-22 16:39:37,028][00571] Num frames 9500...
1174
+ [2025-01-22 16:39:37,156][00571] Num frames 9600...
1175
+ [2025-01-22 16:39:37,286][00571] Num frames 9700...
1176
+ [2025-01-22 16:39:37,415][00571] Num frames 9800...
1177
+ [2025-01-22 16:39:37,557][00571] Num frames 9900...
1178
+ [2025-01-22 16:39:37,687][00571] Num frames 10000...
1179
+ [2025-01-22 16:39:37,832][00571] Avg episode rewards: #0: 60.527, true rewards: #0: 20.128
1180
+ [2025-01-22 16:39:37,833][00571] Avg episode reward: 60.527, avg true_objective: 20.128
1181
+ [2025-01-22 16:39:37,881][00571] Num frames 10100...
1182
+ [2025-01-22 16:39:38,007][00571] Num frames 10200...
1183
+ [2025-01-22 16:39:38,134][00571] Num frames 10300...
1184
+ [2025-01-22 16:39:38,260][00571] Num frames 10400...
1185
+ [2025-01-22 16:39:38,386][00571] Num frames 10500...
1186
+ [2025-01-22 16:39:38,515][00571] Num frames 10600...
1187
+ [2025-01-22 16:39:38,651][00571] Num frames 10700...
1188
+ [2025-01-22 16:39:38,789][00571] Num frames 10800...
1189
+ [2025-01-22 16:39:38,919][00571] Num frames 10900...
1190
+ [2025-01-22 16:39:39,048][00571] Num frames 11000...
1191
+ [2025-01-22 16:39:39,173][00571] Num frames 11100...
1192
+ [2025-01-22 16:39:39,299][00571] Num frames 11200...
1193
+ [2025-01-22 16:39:39,427][00571] Num frames 11300...
1194
+ [2025-01-22 16:39:39,561][00571] Num frames 11400...
1195
+ [2025-01-22 16:39:39,699][00571] Num frames 11500...
1196
+ [2025-01-22 16:39:39,829][00571] Num frames 11600...
1197
+ [2025-01-22 16:39:39,952][00571] Num frames 11700...
1198
+ [2025-01-22 16:39:40,081][00571] Num frames 11800...
1199
+ [2025-01-22 16:39:40,209][00571] Num frames 11900...
1200
+ [2025-01-22 16:39:40,335][00571] Num frames 12000...
1201
+ [2025-01-22 16:39:40,466][00571] Num frames 12100...
1202
+ [2025-01-22 16:39:40,606][00571] Avg episode rewards: #0: 61.105, true rewards: #0: 20.273
1203
+ [2025-01-22 16:39:40,610][00571] Avg episode reward: 61.105, avg true_objective: 20.273
1204
+ [2025-01-22 16:39:40,661][00571] Num frames 12200...
1205
+ [2025-01-22 16:39:40,792][00571] Num frames 12300...
1206
+ [2025-01-22 16:39:40,917][00571] Num frames 12400...
1207
+ [2025-01-22 16:39:41,043][00571] Num frames 12500...
1208
+ [2025-01-22 16:39:41,171][00571] Num frames 12600...
1209
+ [2025-01-22 16:39:41,298][00571] Num frames 12700...
1210
+ [2025-01-22 16:39:41,428][00571] Num frames 12800...
1211
+ [2025-01-22 16:39:41,559][00571] Num frames 12900...
1212
+ [2025-01-22 16:39:41,693][00571] Num frames 13000...
1213
+ [2025-01-22 16:39:41,823][00571] Num frames 13100...
1214
+ [2025-01-22 16:39:41,946][00571] Num frames 13200...
1215
+ [2025-01-22 16:39:42,073][00571] Num frames 13300...
1216
+ [2025-01-22 16:39:42,199][00571] Num frames 13400...
1217
+ [2025-01-22 16:39:42,328][00571] Num frames 13500...
1218
+ [2025-01-22 16:39:42,457][00571] Num frames 13600...
1219
+ [2025-01-22 16:39:42,589][00571] Num frames 13700...
1220
+ [2025-01-22 16:39:42,730][00571] Num frames 13800...
1221
+ [2025-01-22 16:39:42,858][00571] Num frames 13900...
1222
+ [2025-01-22 16:39:42,991][00571] Num frames 14000...
1223
+ [2025-01-22 16:39:43,149][00571] Num frames 14100...
1224
+ [2025-01-22 16:39:43,327][00571] Num frames 14200...
1225
+ [2025-01-22 16:39:43,496][00571] Avg episode rewards: #0: 62.090, true rewards: #0: 20.377
1226
+ [2025-01-22 16:39:43,498][00571] Avg episode reward: 62.090, avg true_objective: 20.377
1227
+ [2025-01-22 16:39:43,564][00571] Num frames 14300...
1228
+ [2025-01-22 16:39:43,746][00571] Num frames 14400...
1229
+ [2025-01-22 16:39:43,914][00571] Num frames 14500...
1230
+ [2025-01-22 16:39:44,079][00571] Num frames 14600...
1231
+ [2025-01-22 16:39:44,246][00571] Num frames 14700...
1232
+ [2025-01-22 16:39:44,415][00571] Num frames 14800...
1233
+ [2025-01-22 16:39:44,590][00571] Num frames 14900...
1234
+ [2025-01-22 16:39:44,776][00571] Num frames 15000...
1235
+ [2025-01-22 16:39:44,956][00571] Num frames 15100...
1236
+ [2025-01-22 16:39:45,132][00571] Num frames 15200...
1237
+ [2025-01-22 16:39:45,308][00571] Num frames 15300...
1238
+ [2025-01-22 16:39:45,489][00571] Num frames 15400...
1239
+ [2025-01-22 16:39:45,646][00571] Num frames 15500...
1240
+ [2025-01-22 16:39:45,782][00571] Num frames 15600...
1241
+ [2025-01-22 16:39:45,918][00571] Num frames 15700...
1242
+ [2025-01-22 16:39:46,046][00571] Num frames 15800...
1243
+ [2025-01-22 16:39:46,176][00571] Num frames 15900...
1244
+ [2025-01-22 16:39:46,306][00571] Num frames 16000...
1245
+ [2025-01-22 16:39:46,437][00571] Num frames 16100...
1246
+ [2025-01-22 16:39:46,567][00571] Num frames 16200...
1247
+ [2025-01-22 16:39:46,696][00571] Num frames 16300...
1248
+ [2025-01-22 16:39:46,838][00571] Avg episode rewards: #0: 62.329, true rewards: #0: 20.455
1249
+ [2025-01-22 16:39:46,841][00571] Avg episode reward: 62.329, avg true_objective: 20.455
1250
+ [2025-01-22 16:39:46,890][00571] Num frames 16400...
1251
+ [2025-01-22 16:39:47,016][00571] Num frames 16500...
1252
+ [2025-01-22 16:39:47,145][00571] Num frames 16600...
1253
+ [2025-01-22 16:39:47,276][00571] Num frames 16700...
1254
+ [2025-01-22 16:39:47,402][00571] Num frames 16800...
1255
+ [2025-01-22 16:39:47,531][00571] Num frames 16900...
1256
+ [2025-01-22 16:39:47,661][00571] Num frames 17000...
1257
+ [2025-01-22 16:39:47,797][00571] Num frames 17100...
1258
+ [2025-01-22 16:39:47,935][00571] Num frames 17200...
1259
+ [2025-01-22 16:39:48,063][00571] Num frames 17300...
1260
+ [2025-01-22 16:39:48,189][00571] Avg episode rewards: #0: 57.950, true rewards: #0: 19.284
1261
+ [2025-01-22 16:39:48,190][00571] Avg episode reward: 57.950, avg true_objective: 19.284
1262
+ [2025-01-22 16:39:48,248][00571] Num frames 17400...
1263
+ [2025-01-22 16:39:48,386][00571] Num frames 17500...
1264
+ [2025-01-22 16:39:48,522][00571] Num frames 17600...
1265
+ [2025-01-22 16:39:48,651][00571] Num frames 17700...
1266
+ [2025-01-22 16:39:48,788][00571] Num frames 17800...
1267
+ [2025-01-22 16:39:48,925][00571] Num frames 17900...
1268
+ [2025-01-22 16:39:49,057][00571] Num frames 18000...
1269
+ [2025-01-22 16:39:49,186][00571] Num frames 18100...
1270
+ [2025-01-22 16:39:49,316][00571] Num frames 18200...
1271
+ [2025-01-22 16:39:49,446][00571] Num frames 18300...
1272
+ [2025-01-22 16:39:49,580][00571] Num frames 18400...
1273
+ [2025-01-22 16:39:49,710][00571] Num frames 18500...
1274
+ [2025-01-22 16:39:49,836][00571] Num frames 18600...
1275
+ [2025-01-22 16:39:49,972][00571] Num frames 18700...
1276
+ [2025-01-22 16:39:50,101][00571] Num frames 18800...
1277
+ [2025-01-22 16:39:50,229][00571] Num frames 18900...
1278
+ [2025-01-22 16:39:50,358][00571] Num frames 19000...
1279
+ [2025-01-22 16:39:50,489][00571] Num frames 19100...
1280
+ [2025-01-22 16:39:50,622][00571] Num frames 19200...
1281
+ [2025-01-22 16:39:50,756][00571] Num frames 19300...
1282
+ [2025-01-22 16:39:50,883][00571] Num frames 19400...
1283
+ [2025-01-22 16:39:51,017][00571] Avg episode rewards: #0: 59.455, true rewards: #0: 19.456
1284
+ [2025-01-22 16:39:51,020][00571] Avg episode reward: 59.455, avg true_objective: 19.456
1285
+ [2025-01-22 16:41:46,505][00571] Replay video saved to train_dir/doom_health_gathering_supreme_2222/replay.mp4!
1286
+ [2025-01-22 16:43:27,367][00571] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1287
+ [2025-01-22 16:43:27,369][00571] Overriding arg 'num_workers' with value 1 passed from command line
1288
+ [2025-01-22 16:43:27,370][00571] Adding new argument 'no_render'=True that is not in the saved config file!
1289
+ [2025-01-22 16:43:27,372][00571] Adding new argument 'save_video'=True that is not in the saved config file!
1290
+ [2025-01-22 16:43:27,374][00571] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1291
+ [2025-01-22 16:43:27,376][00571] Adding new argument 'video_name'=None that is not in the saved config file!
1292
+ [2025-01-22 16:43:27,377][00571] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1293
+ [2025-01-22 16:43:27,379][00571] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1294
+ [2025-01-22 16:43:27,381][00571] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1295
+ [2025-01-22 16:43:27,382][00571] Adding new argument 'hf_repository'='yesbut/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1296
+ [2025-01-22 16:43:27,383][00571] Adding new argument 'policy_index'=0 that is not in the saved config file!
1297
+ [2025-01-22 16:43:27,386][00571] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1298
+ [2025-01-22 16:43:27,387][00571] Adding new argument 'train_script'=None that is not in the saved config file!
1299
+ [2025-01-22 16:43:27,388][00571] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1300
+ [2025-01-22 16:43:27,389][00571] Using frameskip 1 and render_action_repeat=4 for evaluation
1301
+ [2025-01-22 16:43:27,414][00571] RunningMeanStd input shape: (3, 72, 128)
1302
+ [2025-01-22 16:43:27,416][00571] RunningMeanStd input shape: (1,)
1303
+ [2025-01-22 16:43:27,429][00571] ConvEncoder: input_channels=3
1304
+ [2025-01-22 16:43:27,463][00571] Conv encoder output size: 512
1305
+ [2025-01-22 16:43:27,465][00571] Policy head output size: 512
1306
+ [2025-01-22 16:43:27,483][00571] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000929_3805184.pth...
1307
+ [2025-01-22 16:43:27,925][00571] Num frames 100...
1308
+ [2025-01-22 16:43:28,045][00571] Num frames 200...
1309
+ [2025-01-22 16:43:28,163][00571] Num frames 300...
1310
+ [2025-01-22 16:43:28,284][00571] Num frames 400...
1311
+ [2025-01-22 16:43:28,406][00571] Num frames 500...
1312
+ [2025-01-22 16:43:28,532][00571] Num frames 600...
1313
+ [2025-01-22 16:43:28,654][00571] Num frames 700...
1314
+ [2025-01-22 16:43:28,787][00571] Num frames 800...
1315
+ [2025-01-22 16:43:28,926][00571] Num frames 900...
1316
+ [2025-01-22 16:43:29,054][00571] Num frames 1000...
1317
+ [2025-01-22 16:43:29,185][00571] Num frames 1100...
1318
+ [2025-01-22 16:43:29,310][00571] Num frames 1200...
1319
+ [2025-01-22 16:43:29,435][00571] Num frames 1300...
1320
+ [2025-01-22 16:43:29,561][00571] Num frames 1400...
1321
+ [2025-01-22 16:43:29,684][00571] Num frames 1500...
1322
+ [2025-01-22 16:43:29,818][00571] Num frames 1600...
1323
+ [2025-01-22 16:43:29,962][00571] Num frames 1700...
1324
+ [2025-01-22 16:43:30,099][00571] Num frames 1800...
1325
+ [2025-01-22 16:43:30,233][00571] Num frames 1900...
1326
+ [2025-01-22 16:43:30,371][00571] Num frames 2000...
1327
+ [2025-01-22 16:43:30,497][00571] Num frames 2100...
1328
+ [2025-01-22 16:43:30,550][00571] Avg episode rewards: #0: 58.999, true rewards: #0: 21.000
1329
+ [2025-01-22 16:43:30,551][00571] Avg episode reward: 58.999, avg true_objective: 21.000
1330
+ [2025-01-22 16:43:30,676][00571] Num frames 2200...
1331
+ [2025-01-22 16:43:30,805][00571] Num frames 2300...
1332
+ [2025-01-22 16:43:30,938][00571] Num frames 2400...
1333
+ [2025-01-22 16:43:31,069][00571] Num frames 2500...
1334
+ [2025-01-22 16:43:31,196][00571] Num frames 2600...
1335
+ [2025-01-22 16:43:31,321][00571] Num frames 2700...
1336
+ [2025-01-22 16:43:31,445][00571] Num frames 2800...
1337
+ [2025-01-22 16:43:31,610][00571] Num frames 2900...
1338
+ [2025-01-22 16:43:31,745][00571] Num frames 3000...
1339
+ [2025-01-22 16:43:31,868][00571] Num frames 3100...
1340
+ [2025-01-22 16:43:32,001][00571] Num frames 3200...
1341
+ [2025-01-22 16:43:32,127][00571] Num frames 3300...
1342
+ [2025-01-22 16:43:32,202][00571] Avg episode rewards: #0: 44.080, true rewards: #0: 16.580
1343
+ [2025-01-22 16:43:32,204][00571] Avg episode reward: 44.080, avg true_objective: 16.580
1344
+ [2025-01-22 16:43:32,307][00571] Num frames 3400...
1345
+ [2025-01-22 16:43:32,428][00571] Num frames 3500...
1346
+ [2025-01-22 16:43:32,551][00571] Num frames 3600...
1347
+ [2025-01-22 16:43:32,673][00571] Num frames 3700...
1348
+ [2025-01-22 16:43:32,802][00571] Num frames 3800...
1349
+ [2025-01-22 16:43:32,931][00571] Num frames 3900...
1350
+ [2025-01-22 16:43:33,064][00571] Num frames 4000...
1351
+ [2025-01-22 16:43:33,189][00571] Num frames 4100...
1352
+ [2025-01-22 16:43:33,314][00571] Num frames 4200...
1353
+ [2025-01-22 16:43:33,441][00571] Num frames 4300...
1354
+ [2025-01-22 16:43:33,565][00571] Num frames 4400...
1355
+ [2025-01-22 16:43:33,686][00571] Num frames 4500...
1356
+ [2025-01-22 16:43:33,816][00571] Num frames 4600...
1357
+ [2025-01-22 16:43:33,945][00571] Num frames 4700...
1358
+ [2025-01-22 16:43:34,074][00571] Num frames 4800...
1359
+ [2025-01-22 16:43:34,228][00571] Avg episode rewards: #0: 41.263, true rewards: #0: 16.263
1360
+ [2025-01-22 16:43:34,229][00571] Avg episode reward: 41.263, avg true_objective: 16.263
1361
+ [2025-01-22 16:43:34,257][00571] Num frames 4900...
1362
+ [2025-01-22 16:43:34,382][00571] Num frames 5000...
1363
+ [2025-01-22 16:43:34,509][00571] Num frames 5100...
1364
+ [2025-01-22 16:43:34,640][00571] Num frames 5200...
1365
+ [2025-01-22 16:43:34,778][00571] Num frames 5300...
1366
+ [2025-01-22 16:43:34,902][00571] Num frames 5400...
1367
+ [2025-01-22 16:43:35,035][00571] Num frames 5500...
1368
+ [2025-01-22 16:43:35,165][00571] Num frames 5600...
1369
+ [2025-01-22 16:43:35,292][00571] Num frames 5700...
1370
+ [2025-01-22 16:43:35,414][00571] Num frames 5800...
1371
+ [2025-01-22 16:43:35,540][00571] Num frames 5900...
1372
+ [2025-01-22 16:43:35,676][00571] Avg episode rewards: #0: 37.657, true rewards: #0: 14.907
1373
+ [2025-01-22 16:43:35,677][00571] Avg episode reward: 37.657, avg true_objective: 14.907
1374
+ [2025-01-22 16:43:35,735][00571] Num frames 6000...
1375
+ [2025-01-22 16:43:35,862][00571] Num frames 6100...
1376
+ [2025-01-22 16:43:35,985][00571] Num frames 6200...
1377
+ [2025-01-22 16:43:36,122][00571] Num frames 6300...
1378
+ [2025-01-22 16:43:36,246][00571] Num frames 6400...
1379
+ [2025-01-22 16:43:36,370][00571] Num frames 6500...
1380
+ [2025-01-22 16:43:36,493][00571] Num frames 6600...
1381
+ [2025-01-22 16:43:36,625][00571] Num frames 6700...
1382
+ [2025-01-22 16:43:36,755][00571] Num frames 6800...
1383
+ [2025-01-22 16:43:36,904][00571] Num frames 6900...
1384
+ [2025-01-22 16:43:37,075][00571] Num frames 7000...
1385
+ [2025-01-22 16:43:37,252][00571] Num frames 7100...
1386
+ [2025-01-22 16:43:37,445][00571] Num frames 7200...
1387
+ [2025-01-22 16:43:37,623][00571] Num frames 7300...
1388
+ [2025-01-22 16:43:37,794][00571] Num frames 7400...
1389
+ [2025-01-22 16:43:37,961][00571] Num frames 7500...
1390
+ [2025-01-22 16:43:38,129][00571] Num frames 7600...
1391
+ [2025-01-22 16:43:38,296][00571] Num frames 7700...
1392
+ [2025-01-22 16:43:38,467][00571] Num frames 7800...
1393
+ [2025-01-22 16:43:38,642][00571] Num frames 7900...
1394
+ [2025-01-22 16:43:38,827][00571] Num frames 8000...
1395
+ [2025-01-22 16:43:38,905][00571] Avg episode rewards: #0: 40.822, true rewards: #0: 16.022
1396
+ [2025-01-22 16:43:38,907][00571] Avg episode reward: 40.822, avg true_objective: 16.022
1397
+ [2025-01-22 16:43:39,061][00571] Num frames 8100...
1398
+ [2025-01-22 16:43:39,242][00571] Num frames 8200...
1399
+ [2025-01-22 16:43:39,406][00571] Num frames 8300...
1400
+ [2025-01-22 16:43:39,532][00571] Num frames 8400...
1401
+ [2025-01-22 16:43:39,668][00571] Num frames 8500...
1402
+ [2025-01-22 16:43:39,800][00571] Num frames 8600...
1403
+ [2025-01-22 16:43:39,928][00571] Num frames 8700...
1404
+ [2025-01-22 16:43:40,054][00571] Num frames 8800...
1405
+ [2025-01-22 16:43:40,192][00571] Num frames 8900...
1406
+ [2025-01-22 16:43:40,316][00571] Num frames 9000...
1407
+ [2025-01-22 16:43:40,377][00571] Avg episode rewards: #0: 37.838, true rewards: #0: 15.005
1408
+ [2025-01-22 16:43:40,378][00571] Avg episode reward: 37.838, avg true_objective: 15.005
1409
+ [2025-01-22 16:43:40,500][00571] Num frames 9100...
1410
+ [2025-01-22 16:43:40,628][00571] Num frames 9200...
1411
+ [2025-01-22 16:43:40,762][00571] Avg episode rewards: #0: 32.798, true rewards: #0: 13.227
1412
+ [2025-01-22 16:43:40,763][00571] Avg episode reward: 32.798, avg true_objective: 13.227
1413
+ [2025-01-22 16:43:40,815][00571] Num frames 9300...
1414
+ [2025-01-22 16:43:40,938][00571] Num frames 9400...
1415
+ [2025-01-22 16:43:41,061][00571] Num frames 9500...
1416
+ [2025-01-22 16:43:41,190][00571] Num frames 9600...
1417
+ [2025-01-22 16:43:41,323][00571] Num frames 9700...
1418
+ [2025-01-22 16:43:41,375][00571] Avg episode rewards: #0: 29.750, true rewards: #0: 12.125
1419
+ [2025-01-22 16:43:41,376][00571] Avg episode reward: 29.750, avg true_objective: 12.125
1420
+ [2025-01-22 16:43:41,503][00571] Num frames 9800...
1421
+ [2025-01-22 16:43:41,630][00571] Num frames 9900...
1422
+ [2025-01-22 16:43:41,765][00571] Num frames 10000...
1423
+ [2025-01-22 16:43:41,890][00571] Num frames 10100...
1424
+ [2025-01-22 16:43:42,011][00571] Num frames 10200...
1425
+ [2025-01-22 16:43:42,137][00571] Num frames 10300...
1426
+ [2025-01-22 16:43:42,269][00571] Num frames 10400...
1427
+ [2025-01-22 16:43:42,390][00571] Num frames 10500...
1428
+ [2025-01-22 16:43:42,485][00571] Avg episode rewards: #0: 28.147, true rewards: #0: 11.702
1429
+ [2025-01-22 16:43:42,486][00571] Avg episode reward: 28.147, avg true_objective: 11.702
1430
+ [2025-01-22 16:43:42,571][00571] Num frames 10600...
1431
+ [2025-01-22 16:43:42,696][00571] Num frames 10700...
1432
+ [2025-01-22 16:43:42,825][00571] Num frames 10800...
1433
+ [2025-01-22 16:43:42,949][00571] Num frames 10900...
1434
+ [2025-01-22 16:43:43,072][00571] Num frames 11000...
1435
+ [2025-01-22 16:43:43,194][00571] Num frames 11100...
1436
+ [2025-01-22 16:43:43,328][00571] Num frames 11200...
1437
+ [2025-01-22 16:43:43,451][00571] Num frames 11300...
1438
+ [2025-01-22 16:43:43,577][00571] Num frames 11400...
1439
+ [2025-01-22 16:43:43,711][00571] Num frames 11500...
1440
+ [2025-01-22 16:43:43,842][00571] Num frames 11600...
1441
+ [2025-01-22 16:43:43,965][00571] Num frames 11700...
1442
+ [2025-01-22 16:43:44,091][00571] Num frames 11800...
1443
+ [2025-01-22 16:43:44,216][00571] Num frames 11900...
1444
+ [2025-01-22 16:43:44,347][00571] Num frames 12000...
1445
+ [2025-01-22 16:43:44,474][00571] Num frames 12100...
1446
+ [2025-01-22 16:43:44,601][00571] Num frames 12200...
1447
+ [2025-01-22 16:43:44,737][00571] Avg episode rewards: #0: 29.660, true rewards: #0: 12.260
1448
+ [2025-01-22 16:43:44,739][00571] Avg episode reward: 29.660, avg true_objective: 12.260
1449
+ [2025-01-22 16:44:59,770][00571] Replay video saved to /content/train_dir/default_experiment/replay.mp4!