update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: videomae-base-finetuned-basketball-subset-20epochs
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# videomae-base-finetuned-basketball-subset-20epochs
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.8785
|
20 |
+
- Accuracy: 0.1972
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 1
|
41 |
+
- eval_batch_size: 1
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_ratio: 0.1
|
46 |
+
- training_steps: 4060
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 1.2525 | 0.05 | 200 | 0.7720 | 0.52 |
|
53 |
+
| 0.8649 | 1.05 | 400 | 0.7721 | 0.48 |
|
54 |
+
| 1.0703 | 2.05 | 600 | 1.3605 | 0.52 |
|
55 |
+
| 0.606 | 3.05 | 800 | 1.0668 | 0.6 |
|
56 |
+
| 2.0221 | 4.05 | 1000 | 1.1741 | 0.56 |
|
57 |
+
| 1.2916 | 5.05 | 1200 | 1.4747 | 0.52 |
|
58 |
+
| 1.4861 | 6.05 | 1400 | 1.1454 | 0.6 |
|
59 |
+
| 1.3012 | 7.05 | 1600 | 1.6105 | 0.56 |
|
60 |
+
| 1.3327 | 8.05 | 1800 | 1.2343 | 0.52 |
|
61 |
+
| 2.077 | 9.05 | 2000 | 1.3243 | 0.6 |
|
62 |
+
| 1.2349 | 10.05 | 2200 | 1.2044 | 0.6 |
|
63 |
+
| 1.005 | 11.05 | 2400 | 1.6417 | 0.52 |
|
64 |
+
| 1.1622 | 12.05 | 2600 | 1.3058 | 0.56 |
|
65 |
+
| 0.8031 | 13.05 | 2800 | 0.6776 | 0.48 |
|
66 |
+
| 0.8588 | 14.05 | 3000 | 1.1644 | 0.64 |
|
67 |
+
| 0.8451 | 15.05 | 3200 | 0.8491 | 0.64 |
|
68 |
+
| 1.1336 | 16.05 | 3400 | 1.0237 | 0.6 |
|
69 |
+
| 1.5719 | 17.05 | 3600 | 1.0391 | 0.64 |
|
70 |
+
| 0.4892 | 18.05 | 3800 | 0.9995 | 0.64 |
|
71 |
+
| 1.2092 | 19.05 | 4000 | 0.9802 | 0.56 |
|
72 |
+
| 0.9784 | 20.01 | 4060 | 0.9771 | 0.56 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.28.1
|
78 |
+
- Pytorch 2.0.0+cu118
|
79 |
+
- Datasets 2.11.0
|
80 |
+
- Tokenizers 0.13.3
|