yerx commited on
Commit
fa71f76
1 Parent(s): 32f43a7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: videomae-base-finetuned-basketball-subset-20epochs
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # videomae-base-finetuned-basketball-subset-20epochs
16
+
17
+ This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.8785
20
+ - Accuracy: 0.1972
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 1
41
+ - eval_batch_size: 1
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 4060
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 1.2525 | 0.05 | 200 | 0.7720 | 0.52 |
53
+ | 0.8649 | 1.05 | 400 | 0.7721 | 0.48 |
54
+ | 1.0703 | 2.05 | 600 | 1.3605 | 0.52 |
55
+ | 0.606 | 3.05 | 800 | 1.0668 | 0.6 |
56
+ | 2.0221 | 4.05 | 1000 | 1.1741 | 0.56 |
57
+ | 1.2916 | 5.05 | 1200 | 1.4747 | 0.52 |
58
+ | 1.4861 | 6.05 | 1400 | 1.1454 | 0.6 |
59
+ | 1.3012 | 7.05 | 1600 | 1.6105 | 0.56 |
60
+ | 1.3327 | 8.05 | 1800 | 1.2343 | 0.52 |
61
+ | 2.077 | 9.05 | 2000 | 1.3243 | 0.6 |
62
+ | 1.2349 | 10.05 | 2200 | 1.2044 | 0.6 |
63
+ | 1.005 | 11.05 | 2400 | 1.6417 | 0.52 |
64
+ | 1.1622 | 12.05 | 2600 | 1.3058 | 0.56 |
65
+ | 0.8031 | 13.05 | 2800 | 0.6776 | 0.48 |
66
+ | 0.8588 | 14.05 | 3000 | 1.1644 | 0.64 |
67
+ | 0.8451 | 15.05 | 3200 | 0.8491 | 0.64 |
68
+ | 1.1336 | 16.05 | 3400 | 1.0237 | 0.6 |
69
+ | 1.5719 | 17.05 | 3600 | 1.0391 | 0.64 |
70
+ | 0.4892 | 18.05 | 3800 | 0.9995 | 0.64 |
71
+ | 1.2092 | 19.05 | 4000 | 0.9802 | 0.56 |
72
+ | 0.9784 | 20.01 | 4060 | 0.9771 | 0.56 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.28.1
78
+ - Pytorch 2.0.0+cu118
79
+ - Datasets 2.11.0
80
+ - Tokenizers 0.13.3