yeniguno commited on
Commit
fd25542
·
verified ·
1 Parent(s): c3711f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -4
README.md CHANGED
@@ -19,7 +19,7 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # bert-ner-turkish-cased
21
 
22
- This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the a custom Turkish NER dataset.
23
  It achieves the following results on the evaluation set:
24
  - Loss: 0.0987
25
  - Precision: 0.9112
@@ -37,14 +37,43 @@ LABELS = [
37
  "B-DATE", "I-DATE", "B-MONEY", "I-MONEY", "B-MISC", "I-MISC"
38
  ]
39
  ```
 
 
 
 
 
 
40
 
41
  ## Intended uses & limitations
42
 
43
- More information needed
44
 
45
- ## Training and evaluation data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
- More information needed
48
 
49
  ## Training procedure
50
 
 
19
 
20
  # bert-ner-turkish-cased
21
 
22
+ This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on a custom Turkish NER dataset.
23
  It achieves the following results on the evaluation set:
24
  - Loss: 0.0987
25
  - Precision: 0.9112
 
37
  "B-DATE", "I-DATE", "B-MONEY", "I-MONEY", "B-MISC", "I-MISC"
38
  ]
39
  ```
40
+ - PER: Person
41
+ - LOC: Location
42
+ - ORG: Organization
43
+ - DATE: Date
44
+ - MONEY: Money
45
+ - MISC: Miscellaneous Entities
46
 
47
  ## Intended uses & limitations
48
 
49
+ Extracting entities from Turkish text in NLP pipelines.
50
 
51
+ ## How to Use
52
+
53
+ ```python
54
+ from transformers import pipeline
55
+
56
+ model_name = "yeniguno/bert-ner-turkish-cased"
57
+
58
+ ner_pipeline = pipeline("ner", model=model_name, tokenizer=model_name, aggregation_strategy="simple")
59
+
60
+ text = """Selim Parlak, 2023-11-15 tarihinde, CUMHURİYET MAH. DUMAN SOKAK 22500 HAVSA/EDİRNE adresinden, Dünya Varlık Yönetim A.Ş. aracılığıyla 850 TRY değerindeki MP.2386.JPA.IP5.WHT.I İPHONE5 ŞARJLI KILIF "AİR" 1700 MAH (BEYAZ) ürününü satın aldı."""
61
+
62
+ results = ner_pipeline(text)
63
+
64
+ for result in results:
65
+ print(result)
66
+
67
+ """
68
+ {'entity_group': 'PER', 'score': 0.9993254, 'word': 'Selim Parlak', 'start': 0, 'end': 12}
69
+ {'entity_group': 'DATE', 'score': 0.9987677, 'word': '2023 - 11 - 15', 'start': 14, 'end': 24}
70
+ {'entity_group': 'LOC', 'score': 0.99951524, 'word': 'CUMHURİYET MAH. DUMAN SOKAK 22500 HAVSA / EDİRNE', 'start': 36, 'end': 82}
71
+ {'entity_group': 'ORG', 'score': 0.8487069, 'word': 'Dünya Varlık Yönetim A. Ş.', 'start': 95, 'end': 120}
72
+ {'entity_group': 'MONEY', 'score': 0.9970985, 'word': '850 TRY', 'start': 134, 'end': 141}
73
+ {'entity_group': 'MISC', 'score': 0.97721404, 'word': 'MP. 2386. JPA. IP5. WHT. I İPHONE5 ŞARJLI KILIF " AİR " 1700 MAH ( BEYAZ )', 'start': 154, 'end': 219}
74
+ """
75
+ ```
76
 
 
77
 
78
  ## Training procedure
79