kosmos-2-patch14-224 / flask_kosmos2.py
JGKaaij's picture
Upload flask_kosmos2.py
ad9b42d
raw
history blame
2.08 kB
# This is a Flask app to serve the model as a REST API.
# After starting the server. You can send a POST request to `http://localhost:8005/process_prompt` with the following form data:
# - `prompt`: For example, `<grounding> an image of`
# - 'image': The image file as binary data
# This will produce a reply with the following JSON format:
# - `message`: The Kosmos-2 generated text
# - `entities`: The extracted entities
# An easy way to test this is through an application like Postman. Make sure the image field is set to `File`.
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from flask import Flask, request, jsonify
app = Flask(__name__)
model = AutoModelForVision2Seq.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
@app.route('/process_prompt', methods=['POST'])
def process_prompt():
try:
# Get the uploaded image data from the POST request
uploaded_file = request.files['image']
prompt = request.form.get('prompt')
image = Image.open(uploaded_file.stream)
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"][:, :-1],
attention_mask=inputs["attention_mask"][:, :-1],
img_features=None,
img_attn_mask=inputs["img_attn_mask"][:, :-1],
use_cache=True,
max_new_tokens=64,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# By default, the generated text is cleanup and the entities are extracted.
processed_text, entities = processor.post_process_generation(generated_text)
return jsonify({"message": processed_text, 'entities': entities})
except Exception as e:
return jsonify({"error": str(e)})
if __name__ == '__main__':
app.run(host='localhost', port=8005)