|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch KOSMOS-2 model.""" |
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPooling, |
|
CausalLMOutputWithCrossAttentions, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_kosmos2 import Kosmos2Config, Kosmos2TextConfig, Kosmos2VisionConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "microsoft/kosmos-2-patch14-224" |
|
_CONFIG_FOR_DOC = Kosmos2Config |
|
_EXPECTED_OUTPUT_SHAPE = None |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): |
|
""" |
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols |
|
are ignored. This is modified from fairseq's `utils.make_positions`. |
|
|
|
Args: |
|
x: torch.Tensor x: |
|
|
|
Returns: torch.Tensor |
|
""" |
|
|
|
mask = input_ids.ne(padding_idx).int() |
|
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask |
|
return incremental_indices.long() + padding_idx |
|
|
|
|
|
KOSMOS2_START_DOCSTRING = r"""Kosmos-2""" |
|
KOSMOS2_VISION_INPUTS_DOCSTRING = r"""Kosmos-2""" |
|
KOSMOS2_TEXT_INPUTS_DOCSTRING = r"""Kosmos-2""" |
|
KOSMOS2_INPUTS_DOCSTRING = r"""Kosmos-2""" |
|
|
|
|
|
@dataclass |
|
class Kosmos2ModelOutput(ModelOutput): |
|
""" |
|
Base class for text model's outputs that also contains a pooling of the last hidden states. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*, returned when being computed by the model): |
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextConnector`. |
|
image_connector_attention (`tuple(torch.FloatTensor)`, *optional, returned when being computed by the model): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights given by `Kosmos2ImageToTextConnector`, after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
vision_model_output(`BaseModelOutputWithPooling`, *optional*, returned when being computed by the model): |
|
The output of the [`Kosmos2VisionModel`]. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if |
|
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, |
|
encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if |
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` |
|
input) to speed up sequential decoding. |
|
""" |
|
|
|
last_hidden_states: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_features: Optional[torch.FloatTensor] = None |
|
image_connector_attention: Optional[Tuple[torch.FloatTensor]] = None |
|
vision_model_output: BaseModelOutputWithPooling = None |
|
|
|
|
|
@dataclass |
|
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput): |
|
""" |
|
Model output class for `Kosmos2ForConditionalGeneration`. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*, returned when being computed by the model): |
|
Sequence of hidden-states at the output of `Kosmos2ImageToTextConnector`. |
|
image_connector_attention (`tuple(torch.FloatTensor)`, *optional, returned when being computed by the model): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights given by `Kosmos2ImageToTextConnector`, after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
vision_model_output(`BaseModelOutputWithPooling`, *optional*, returned when being computed by the model): |
|
The output of the [`Kosmos2VisionModel`]. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if |
|
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, |
|
encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if |
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` |
|
input) to speed up sequential decoding. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_features: Optional[torch.FloatTensor] = None |
|
image_connector_attention: Optional[Tuple[torch.FloatTensor]] = None |
|
vision_model_output: BaseModelOutputWithPooling = None |
|
|
|
|
|
|
|
class Kosmos2VisionEmbeddings(nn.Module): |
|
def __init__(self, config: Kosmos2VisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=config.num_channels, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
bias=False, |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches + 1 |
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) |
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
batch_size = pixel_values.shape[0] |
|
patch_embeds = self.patch_embedding(pixel_values) |
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) |
|
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1) |
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) |
|
embeddings = embeddings + self.position_embedding(self.position_ids) |
|
return embeddings |
|
|
|
|
|
|
|
class Kosmos2VisionAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = config.attention_dropout |
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
causal_attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
bsz, tgt_len, embed_dim = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scale |
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
|
|
if causal_attention_mask is not None: |
|
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" |
|
f" {causal_attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if output_attentions: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights_reshaped |
|
|
|
|
|
|
|
class Kosmos2VisionMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class Kosmos2VisionEncoderLayer(nn.Module): |
|
def __init__(self, config: Kosmos2VisionConfig): |
|
super().__init__() |
|
self.embed_dim = config.hidden_size |
|
self.self_attn = Kosmos2VisionAttention(config) |
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.mlp = Kosmos2VisionMLP(config) |
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
causal_attention_mask: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.FloatTensor]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
`(config.encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.layer_norm1(hidden_states) |
|
hidden_states, attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
causal_attention_mask=causal_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class Kosmos2VisionEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`Kosmos2VisionEncoderLayer`]. |
|
|
|
Args: |
|
config: Kosmos2VisionConfig |
|
""" |
|
|
|
def __init__(self, config: Kosmos2VisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.layers = nn.ModuleList([Kosmos2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
inputs_embeds, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
causal_attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
r""" |
|
Args: |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Causal mask for the text model. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
hidden_states = inputs_embeds |
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(encoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
causal_attention_mask, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
causal_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
|
|
class Kosmos2VisionTransformer(nn.Module): |
|
def __init__(self, config: Kosmos2VisionConfig): |
|
super().__init__() |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
|
|
self.embeddings = Kosmos2VisionEmbeddings(config) |
|
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
self.encoder = Kosmos2VisionEncoder(config) |
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_VISION_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
hidden_states = self.embeddings(pixel_values) |
|
hidden_states = self.pre_layrnorm(hidden_states) |
|
|
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_state = encoder_outputs[0] |
|
pooled_output = last_hidden_state[:, 0, :] |
|
pooled_output = self.post_layernorm(pooled_output) |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
|
|
class Kosmos2TextSinusoidalPositionalEmbedding(nn.Module): |
|
"""This module produces sinusoidal positional embeddings of any length.""" |
|
|
|
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): |
|
super().__init__() |
|
self.offset = 2 |
|
self.embedding_dim = embedding_dim |
|
self.padding_idx = padding_idx |
|
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) |
|
|
|
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): |
|
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) |
|
if hasattr(self, "weights"): |
|
|
|
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) |
|
|
|
self.register_buffer("weights", emb_weights, persistent=False) |
|
|
|
@staticmethod |
|
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): |
|
""" |
|
Build sinusoidal embeddings. |
|
|
|
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of |
|
"Attention Is All You Need". |
|
""" |
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) |
|
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) |
|
if embedding_dim % 2 == 1: |
|
|
|
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) |
|
if padding_idx is not None: |
|
emb[padding_idx, :] = 0 |
|
|
|
return emb.to(torch.get_default_dtype()) |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0 |
|
): |
|
if input_ids is not None: |
|
bsz, seq_len = input_ids.size() |
|
|
|
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( |
|
input_ids.device |
|
) |
|
else: |
|
bsz, seq_len = inputs_embeds.size()[:-1] |
|
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) |
|
|
|
|
|
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length |
|
if max_pos > self.weights.size(0): |
|
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) |
|
|
|
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() |
|
|
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): |
|
""" |
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. |
|
|
|
Args: |
|
inputs_embeds: torch.Tensor |
|
|
|
Returns: torch.Tensor |
|
""" |
|
input_shape = inputs_embeds.size()[:-1] |
|
sequence_length = input_shape[1] |
|
|
|
position_ids = torch.arange( |
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device |
|
) |
|
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length |
|
|
|
|
|
|
|
class KosmosTextAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__( |
|
self, |
|
config, |
|
embed_dim: int, |
|
num_heads: int, |
|
dropout: float = 0.0, |
|
is_decoder: bool = False, |
|
add_inner_attn_layernorm: bool = False, |
|
bias: bool = True, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" |
|
f" and `num_heads`: {num_heads})." |
|
) |
|
self.scaling = self.head_dim**-0.5 |
|
self.is_decoder = is_decoder |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
|
|
self.inner_attn_ln = None |
|
if add_inner_attn_layernorm: |
|
self.inner_attn_ln = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
|
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scaling |
|
|
|
|
|
|
|
|
|
if ( |
|
is_cross_attention |
|
and past_key_value is not None |
|
and past_key_value[0].shape[2] == key_value_states.shape[1] |
|
): |
|
|
|
key_states = past_key_value[0] |
|
value_states = past_key_value[1] |
|
elif is_cross_attention: |
|
|
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) |
|
elif past_key_value is not None: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
else: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_states, value_states) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.reshape(*proj_shape) |
|
value_states = value_states.reshape(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if layer_head_mask is not None: |
|
if layer_head_mask.size() != (self.num_heads,): |
|
raise ValueError( |
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" |
|
f" {layer_head_mask.size()}" |
|
) |
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if output_attentions: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
if self.inner_attn_ln is not None: |
|
attn_output = self.inner_attn_ln(attn_output) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights_reshaped, past_key_value |
|
|
|
|
|
class Kosmos2TextFFN(nn.Module): |
|
def __init__(self, config: Kosmos2TextConfig): |
|
super().__init__() |
|
|
|
self.dropout = config.dropout |
|
self.activation_fn = ACT2FN[config.activation_function] |
|
self.activation_dropout = config.activation_dropout |
|
|
|
self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim) |
|
self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim) |
|
|
|
self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) |
|
hidden_states = self.ffn_layernorm(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
return hidden_states |
|
|
|
|
|
class Kosmos2TextBlock(nn.Module): |
|
def __init__(self, config: Kosmos2TextConfig): |
|
super().__init__() |
|
self.embed_dim = config.embed_dim |
|
|
|
self.self_attn = KosmosTextAttention( |
|
config, |
|
embed_dim=self.embed_dim, |
|
num_heads=config.attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=True, |
|
add_inner_attn_layernorm=True, |
|
) |
|
self.dropout = config.dropout |
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
if config.add_cross_attention: |
|
self.encoder_attn = KosmosTextAttention( |
|
config, |
|
embed_dim=self.embed_dim, |
|
num_heads=config.attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=True, |
|
add_inner_attn_layernorm=False, |
|
) |
|
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
self.ffn = Kosmos2TextFFN(config) |
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = True, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
residual = hidden_states |
|
|
|
|
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
|
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
past_key_value=self_attn_past_key_value, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
cross_attn_present_key_value = None |
|
cross_attn_weights = None |
|
if encoder_hidden_states is not None: |
|
if not hasattr(self, "encoder_attn"): |
|
raise ValueError( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" |
|
" by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.encoder_attn_layer_norm(hidden_states) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( |
|
hidden_states=hidden_states, |
|
key_value_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
|
|
hidden_states = self.ffn(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights, cross_attn_weights) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class Kosmos2TextTransformer(nn.Module): |
|
""" |
|
Transformer decoder consisting of `config.layers` layers. Each layer is a [`Kosmos2TextBlock`]. |
|
|
|
Args: |
|
config: Kosmos2TextConfig |
|
""" |
|
|
|
def __init__(self, config: Kosmos2TextConfig): |
|
super().__init__() |
|
self.config = config |
|
self.dropout = config.dropout |
|
self.layerdrop = config.layerdrop |
|
|
|
self.embed_scale = math.sqrt(config.embed_dim) if config.scale_embedding else 1.0 |
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_dim, padding_idx=config.pad_token_id) |
|
|
|
self.embed_positions = Kosmos2TextSinusoidalPositionalEmbedding( |
|
num_positions=config.max_position_embeddings, |
|
embedding_dim=config.embed_dim, |
|
padding_idx=config.pad_token_id, |
|
) |
|
|
|
self.layers = nn.ModuleList([Kosmos2TextBlock(config) for _ in range(config.layers)]) |
|
self.layer_norm = nn.LayerNorm(config.embed_dim, config.layer_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward_embedding( |
|
self, input_ids, inputs_embeds=None, img_features=None, img_input_mask=None, past_key_values_length: int = 0 |
|
): |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if img_features is not None: |
|
inputs_embeds[img_input_mask.to(dtype=torch.bool)] = img_features.view(-1, img_features.size(-1)) |
|
|
|
inputs_embeds = inputs_embeds * self.embed_scale |
|
|
|
|
|
positions = self.embed_positions( |
|
input_ids=input_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length |
|
) |
|
positions = positions.to(inputs_embeds.device) |
|
|
|
hidden_states = inputs_embeds + positions |
|
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
return hidden_states |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
img_features: Optional[torch.Tensor] = None, |
|
img_attn_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.shape |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
|
|
if past_key_values_length > 0: |
|
img_features = None |
|
img_attn_mask = None |
|
|
|
hidden_states = self.forward_embedding( |
|
input_ids=input_ids, |
|
inputs_embeds=inputs_embeds, |
|
img_features=img_features, |
|
img_input_mask=img_attn_mask, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, input_shape, hidden_states, past_key_values_length |
|
) |
|
|
|
|
|
if encoder_hidden_states is not None and encoder_attention_mask is not None: |
|
|
|
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) |
|
|
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
|
|
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): |
|
if attn_mask is not None: |
|
if attn_mask.size()[0] != (len(self.layers)): |
|
raise ValueError( |
|
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" |
|
f" {head_mask.size()[0]}." |
|
) |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
if self.training: |
|
dropout_probability = torch.rand([]) |
|
if dropout_probability < self.layerdrop: |
|
continue |
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, use_cache) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
head_mask[idx] if head_mask is not None else None, |
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
cross_attn_layer_head_mask=( |
|
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None |
|
), |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if encoder_hidden_states is not None: |
|
all_cross_attentions += (layer_outputs[2],) |
|
|
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
class Kosmos2PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = Kosmos2Config |
|
supports_gradient_checkpointing = True |
|
|
|
|
|
@add_start_docstrings( |
|
"""The vision model from KOSMOS-2 without any head or projection on top.""", |
|
KOSMOS2_START_DOCSTRING, |
|
) |
|
class Kosmos2VisionModel(Kosmos2PreTrainedModel): |
|
config_class = Kosmos2VisionConfig |
|
main_input_name = "pixel_values" |
|
|
|
|
|
def __init__(self, config: Kosmos2VisionConfig): |
|
super().__init__(config) |
|
self.model = Kosmos2VisionTransformer(config) |
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.model.embeddings.patch_embedding |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_VISION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Kosmos2VisionConfig) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
return self.model( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""The text model from KOSMOS-2 without any head or projection on top.""", |
|
KOSMOS2_START_DOCSTRING, |
|
) |
|
class Kosmos2TextModel(Kosmos2PreTrainedModel): |
|
config_class = Kosmos2TextConfig |
|
|
|
_no_split_modules = ["Kosmos2TextBlock"] |
|
|
|
def __init__(self, config: Kosmos2TextConfig): |
|
super().__init__(config) |
|
self.model = Kosmos2TextTransformer(config) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=Kosmos2TextConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
img_features: Optional[torch.Tensor] = None, |
|
img_attn_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
return self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
img_features=img_features, |
|
img_attn_mask=img_attn_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
head_mask=head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The text model from KOSMOS-2 with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
KOSMOS2_START_DOCSTRING, |
|
) |
|
class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel): |
|
config_class = Kosmos2TextConfig |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: Kosmos2TextConfig): |
|
super().__init__(config) |
|
|
|
self.model = Kosmos2TextTransformer(config) |
|
self.lm_head = nn.Linear(in_features=config.embed_dim, out_features=config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self) -> nn.Module: |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=Kosmos2TextConfig) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
img_features: Optional[torch.Tensor] = None, |
|
img_attn_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
Returns: |
|
|
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if labels is not None: |
|
if use_cache: |
|
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") |
|
use_cache = False |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
img_features=img_features, |
|
img_attn_mask=img_attn_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
head_mask=head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
logits = self.lm_head(outputs[0]) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
cross_attentions=outputs.cross_attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
img_features, |
|
img_attn_mask, |
|
past_key_values=None, |
|
attention_mask=None, |
|
use_cache=None, |
|
**model_kwargs, |
|
): |
|
input_shape = input_ids.shape |
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
|
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
img_features = None |
|
img_attn_mask = None |
|
elif img_attn_mask is not None: |
|
|
|
batch_size, seq_len = input_ids.size() |
|
mask_len = img_attn_mask.size()[-1] |
|
img_attn_mask = torch.cat( |
|
(img_attn_mask, torch.zeros(size=(batch_size, seq_len - mask_len), dtype=torch.bool, device=input_ids.device)), dim=1 |
|
) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"img_features": img_features, |
|
"img_attn_mask": img_attn_mask, |
|
"past_key_values": past_key_values, |
|
"attention_mask": attention_mask, |
|
"use_cache": use_cache, |
|
} |
|
|
|
|
|
class Kosmos2ImageToTextConnector(nn.Module): |
|
"""The layer that transforms the image model's output to part of the text model's input (namely, image features)""" |
|
|
|
def __init__(self, config: Kosmos2Config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.vision_config.hidden_size, config.text_config.embed_dim) |
|
self.latent_query = nn.Parameter(torch.randn(config.latent_query_num, config.text_config.embed_dim)) |
|
|
|
self.x_attn = KosmosTextAttention( |
|
config.text_config, |
|
config.text_config.embed_dim, |
|
config.text_config.attention_heads, |
|
dropout=config.text_config.attention_dropout, |
|
is_decoder=False, |
|
add_inner_attn_layernorm=False, |
|
) |
|
|
|
def forward(self, features): |
|
hidden_states = self.dense(features) |
|
|
|
|
|
latent_query = self.latent_query.unsqueeze(0).expand(hidden_states.size(0), -1, -1) |
|
key_value_states = torch.cat([hidden_states, latent_query], dim=1) |
|
|
|
hidden_states, attn_weights, _ = self.x_attn( |
|
hidden_states=latent_query, |
|
key_value_states=key_value_states, |
|
past_key_value=None, |
|
attention_mask=None, |
|
output_attentions=None, |
|
) |
|
|
|
return hidden_states, attn_weights |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
KOSMOS-2 Model for generating text and image features. The model consists of a vision encoder (CLIP) and a language |
|
model. |
|
""", |
|
KOSMOS2_START_DOCSTRING, |
|
) |
|
class Kosmos2Model(Kosmos2PreTrainedModel): |
|
config_class = Kosmos2Config |
|
|
|
def __init__(self, config: Kosmos2Config): |
|
super().__init__(config) |
|
|
|
self.text_model = Kosmos2TextModel(config.text_config) |
|
self.vision_model = Kosmos2VisionModel(config.vision_config) |
|
self.image_to_text_connector = Kosmos2ImageToTextConnector(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.text_model.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.text_model.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Kosmos2ModelOutput, config_class=Kosmos2Config) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
img_attn_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
img_features: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Kosmos2ModelOutput]: |
|
|
|
r""" |
|
Returns: |
|
|
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_model_output = None |
|
image_connector_attention = None |
|
if img_features is None: |
|
if pixel_values is None: |
|
raise ValueError("You have to specify either `pixel_values` or `img_features`.") |
|
|
|
vision_model_output = self.vision_model(pixel_values) |
|
|
|
|
|
img_features = self.vision_model.model.post_layernorm(vision_model_output.last_hidden_state) |
|
|
|
img_features = nn.functional.normalize(img_features, dim=-1) |
|
img_features, image_connector_attention = self.image_to_text_connector(img_features) |
|
|
|
outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
img_features=img_features, |
|
img_attn_mask=img_attn_mask, |
|
head_mask=head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
outputs = outputs + (img_features, image_connector_attention, vision_model_output) |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return Kosmos2ModelOutput( |
|
last_hidden_states=outputs.last_hidden_state, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_features=img_features, |
|
image_connector_attention=image_connector_attention, |
|
vision_model_output=vision_model_output, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
KOSMOS-2 Model for generating text and bounding boxes given an image. The model consists of a vision encoder (CLIP) |
|
and a language model. |
|
""", |
|
KOSMOS2_START_DOCSTRING, |
|
) |
|
class Kosmos2ForConditionalGeneration(Kosmos2PreTrainedModel): |
|
config_class = Kosmos2Config |
|
_tied_weights_keys = ["text_model.lm_head.weight"] |
|
|
|
def __init__(self, config: Kosmos2Config): |
|
super().__init__(config) |
|
|
|
self.text_model = Kosmos2TextForCausalLM(config.text_config) |
|
self.vision_model = Kosmos2VisionModel(config.vision_config) |
|
|
|
self.image_to_text_connector = Kosmos2ImageToTextConnector(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.text_model.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.text_model.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self) -> nn.Module: |
|
return self.text_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.text_model.set_output_embeddings(new_embeddings) |
|
|
|
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Kosmos2ForConditionalGenerationModelOutput, config_class=Kosmos2Config) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
img_attn_mask=None, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask=None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
img_features: Optional[List[torch.FloatTensor]] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, Kosmos2ForConditionalGenerationModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> from transformers import AutoProcessor, Kosmos2ForConditionalGeneration |
|
|
|
>>> model = Kosmos2ForConditionalGeneration.from_pretrained("ydshieh/kosmos-2-patch14-224") |
|
>>> processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224") |
|
|
|
>>> prompt = "<grounding> An image of" |
|
>>> image = Image.open("snowman.jpg") |
|
|
|
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
>>> generated_ids = model.generate( |
|
... pixel_values=inputs["pixel_values"], |
|
... input_ids=inputs["input_ids"][:, :-1], |
|
... attention_mask=inputs["attention_mask"][:, :-1], |
|
... img_features=None, |
|
... img_attn_mask=inputs["img_attn_mask"][:, :-1], |
|
... use_cache=True, |
|
... max_new_tokens=64, |
|
... ) |
|
|
|
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
>>> result = processor.post_processor_generation(generated_text) |
|
>>> result |
|
<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>. |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
vision_model_output = None |
|
image_connector_attention = None |
|
if img_features is None: |
|
if pixel_values is None: |
|
raise ValueError("You have to specify either `pixel_values` or `img_features`.") |
|
|
|
vision_model_output = self.vision_model(pixel_values) |
|
|
|
|
|
img_features = self.vision_model.model.post_layernorm(vision_model_output.last_hidden_state) |
|
|
|
img_features = nn.functional.normalize(img_features, dim=-1) |
|
img_features, image_connector_attention = self.image_to_text_connector(img_features) |
|
|
|
lm_outputs = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
img_features=img_features, |
|
img_attn_mask=img_attn_mask, |
|
head_mask=head_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
outputs = lm_outputs + (img_features, image_connector_attention, vision_model_output) |
|
return tuple(output for output in outputs if output is not None) |
|
|
|
return Kosmos2ForConditionalGenerationModelOutput( |
|
loss=lm_outputs.loss, |
|
logits=lm_outputs.logits, |
|
past_key_values=lm_outputs.past_key_values, |
|
hidden_states=lm_outputs.hidden_states, |
|
attentions=lm_outputs.attentions, |
|
image_features=img_features, |
|
image_connector_attention=image_connector_attention, |
|
vision_model_output=vision_model_output, |
|
) |
|
|
|
def generate( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
img_features=None, |
|
inputs_embeds=None, |
|
pixel_values=None, |
|
**kwargs, |
|
): |
|
|
|
inputs = kwargs.pop("inputs", None) |
|
if pixel_values is not None and inputs is not None: |
|
raise ValueError( |
|
f"`inputs`: {inputs} were passed alongside `pixel_values` which is not allowed." |
|
f"Make sure to either pass `inputs` or pixel_values=..." |
|
) |
|
if pixel_values is None and inputs is not None: |
|
pixel_values = inputs |
|
|
|
if img_features is None: |
|
vision_model_output = self.vision_model(pixel_values) |
|
|
|
|
|
img_features = self.vision_model.model.post_layernorm(vision_model_output.last_hidden_state) |
|
|
|
img_features = nn.functional.normalize(img_features, dim=-1) |
|
img_features, image_connector_attention = self.image_to_text_connector(img_features) |
|
|
|
output = self.text_model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
img_features=img_features, |
|
input_embeds=inputs_embeds, |
|
**kwargs, |
|
) |
|
|
|
return output |
|
|