Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlace-v3.zip +3 -0
- a2c-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlace-v3/data +97 -0
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlace-v3/policy.pth +3 -0
- a2c-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlace-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:142d56f2137ddcdb214e6764cb191c10c3f0f43bbe03062fbbfac7d7a17e20c6
|
3 |
+
size 123091
|
a2c-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79c5c849d630>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x79c5c849acc0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1693521235928972448,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtiHMv3TscsBeQdzA7TQewHPIEsBr4Rk+3euPPrVJdj9E4hk+LSJgv6lHar/T4Bk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAp221vzQ5/D3OTwW/nfTHvBw6oL8bUJI/bbAovlpjjT+LW4q/35K/P8vz0r+LW4q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAxX88+vO8uvp60NUD5RrE91x+JO6aIgjwFS88/tiHMv3TscsBeQdzAXen4u9sm/cDmG5m9bBw8Pc64YTxsxo89Xscku5C6grzqTq06jKbGv32eM8Cz5m+/E9yUPxrLaz67JCk/UsU3v+00HsBzyBLAa+EZPgLSm8A5S6U8TZ2JwI+OOz1jp2I8sRWQPWLAL7suCpS8n4vMOpna171pwgc/lVkJv5oYLz5XvYm+c5Bjvtrcrj/d648+tUl2P0TiGT6X1vi7TVmkPNBN1rx5xzw9ZRJiPB7Jjz1Fwya7B72CvHC1tjpsEZU/lgZMvxwk0D90moO+tl15v5xtCL2axDe/LSJgv6lHar/T4Bk+AVv6u7LnpDwsnM68fnY9PaAgZTxsxo89Jscku4q6grx/ZNo6lGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[-1.5947788 -3.795682 -6.8829794 ]\n [-2.4719803 -2.2934844 0.15027396]\n [ 0.28109637 0.9620622 0.1502772 ]\n [-0.8755215 -0.91515595 0.1502717 ]]",
|
34 |
+
"desired_goal": "[[-1.4174088 0.12315598 -0.520749 ]\n [-0.02440863 -1.2517734 1.1430696 ]\n [-0.16473551 1.1045945 -1.0809187 ]\n [ 1.4966697 -1.648065 -1.0809187 ]]",
|
35 |
+
"observation": "[[ 4.0502313e-01 -1.7083639e-01 2.8391490e+00 8.6561151e-02\n 4.1847038e-03 1.5934300e-02 1.6194769e+00 -1.5947788e+00\n -3.7956820e+00 -6.8829794e+00 -7.5961784e-03 -7.9109931e+00\n -7.4760243e-02 4.5925543e-02 1.3776971e-02 7.0202678e-02\n -2.5143246e-03 -1.5958101e-02 1.3222371e-03]\n [-1.5519576e+00 -2.8065484e+00 -9.3711394e-01 1.1629661e+00\n 2.3026696e-01 6.6071671e-01 -7.1785462e-01 -2.4719803e+00\n -2.2934844e+00 1.5027396e-01 -4.8693857e+00 2.0177471e-02\n -4.3004518e+00 4.5790251e-02 1.3833853e-02 7.0353873e-02\n -2.6817550e-03 -1.8071260e-02 1.5605575e-03]\n [-1.0539741e-01 5.3031021e-01 -5.3652316e-01 1.7099229e-01\n -2.6902267e-01 -2.2223072e-01 1.3661149e+00 2.8109637e-01\n 9.6206218e-01 1.5027720e-01 -7.5939405e-03 2.0062113e-02\n -2.6160151e-02 4.6088669e-02 1.3798331e-02 7.0207819e-02\n -2.5445980e-03 -1.5959276e-02 1.3939571e-03]\n [ 1.1645942e+00 -7.9697549e-01 1.6261020e+00 -2.5703776e-01\n -9.7408617e-01 -3.3307657e-02 -7.1784365e-01 -8.7552148e-01\n -9.1515595e-01 1.5027170e-01 -7.6402430e-03 2.0130012e-02\n -2.5220953e-02 4.6255581e-02 1.3984829e-02 7.0202678e-02\n -2.5143116e-03 -1.5958089e-02 1.6662030e-03]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAg6U/PAwEN70K16M8O+GnPCmx+j0K16M8oOduPfIvBD4K16M83s/SPRVbAL4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvtnmvGqzyL29iQU+KvVOPUXzTb2UlME9H+BePaPE/b0K16M8G2epvSyZ0r00u6U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAg6U/PAwEN70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADvhpzwpsfo9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACg52498i8EPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA3s/SPRVbAL4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[ 0.01169718 -0.04468159 0.02 ]\n [ 0.02049314 0.12240822 0.02 ]\n [ 0.05832636 0.12908915 0.02 ]\n [ 0.10293554 -0.12534745 0.02 ]]",
|
45 |
+
"desired_goal": "[[-0.02818 -0.09799846 0.13040824]\n [ 0.05052678 -0.05028083 0.09452167]\n [ 0.05441296 -0.12391021 0.02 ]\n [-0.08271619 -0.10283121 0.08092347]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1697176e-02\n -4.4681594e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0493140e-02\n 1.2240822e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.8326364e-02\n 1.2908915e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0293554e-01\n -1.2534745e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpXoC7sfJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX1MKkVN6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXx3m/336dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXyh55Z8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX5m+9Jz1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYGMJx//edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYC150KZ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYDMpXp4bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYKdAX2ugdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYXp6QeV+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYUW0Z3s5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYU8R15jZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYcGYKIBSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYpF9BrvcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYl6YVqN7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYl8ujASGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYtSydFvydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY6xgy/KydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY3b1h9b5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY6mrsByTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZEBC2MKkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZUMpG4I9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZRMx46fbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZYY593KTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZh29US7HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZzEJ8fFKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZwCLl3hXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ4lTvRZ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaCZZjhDPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaSLaEi+tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaPEORT0hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaXALApKBdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpaXorFwT/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpagpiI+GHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaxWZ7XxwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpauZ/b0vodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaxBFd9lVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpa4CY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbFHuZ1FIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbCD0th/idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbCznq3VkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbJrGR3eOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbWYgJTl1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbTEXUH6edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbUjFqBVddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbbrns9jgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbqJu/DcedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbm4qXnhbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpboB9kSVXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbu7ulXRxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb8SeRPoFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb49Gy5ZsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb7ikfs/qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcEsTviLmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcV3qiXY2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcS2VNYbLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcaZNXYDldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcjrYf4h2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpc1NQj2SMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcyNX5nDjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpc7pf6XSjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpdE8GC7K8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpdWTVUdaMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpdTTLns9kdX2UKGgGR8BCgAAAAAAAaAdLJmgIR0CpdU/3nIQwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpdpKcEvCedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpd8f+S8radX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpd5N+so2GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpd2OHWSU1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpeB4RdyDJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpePguZkTYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpeMUdJaq0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpeJR+BpYcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpeT9g4OtodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpehEn1FpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cped9Gqgh9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpeeTasZHedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpealwDNhWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpemZggHNYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpezb+cYqHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpewdzGPxQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpetOvllshdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpe4yWZ7XydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfGG0eEIxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfDHDJlredX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpe/jBl+VkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfLhUR3/xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfYwWN3nqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfV0A1ejVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfSsPrfLtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfeHfl6qsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpfral1r6+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfodupCKKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpflX4sVcmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfxCwKSgXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpf+nfdhy9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpf7mxD9fkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpf76OYIBzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpf4bWVeKLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpgD8CPp6hdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True True]",
|
82 |
+
"bounded_above": "[ True True True True]",
|
83 |
+
"_shape": [
|
84 |
+
4
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83f2053724ab240e8f1e3096fe7702da6de53001952dfdff668c1d59c6629adf
|
3 |
+
size 51646
|
a2c-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca701e7c3d0fb2c89946c2990dc1546776057cd6a00467721e5b7a551d745400
|
3 |
+
size 52926
|
a2c-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79c5c849d630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c5c849acc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693521235928972448, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtiHMv3TscsBeQdzA7TQewHPIEsBr4Rk+3euPPrVJdj9E4hk+LSJgv6lHar/T4Bk+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAp221vzQ5/D3OTwW/nfTHvBw6oL8bUJI/bbAovlpjjT+LW4q/35K/P8vz0r+LW4q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAxX88+vO8uvp60NUD5RrE91x+JO6aIgjwFS88/tiHMv3TscsBeQdzAXen4u9sm/cDmG5m9bBw8Pc64YTxsxo89Xscku5C6grzqTq06jKbGv32eM8Cz5m+/E9yUPxrLaz67JCk/UsU3v+00HsBzyBLAa+EZPgLSm8A5S6U8TZ2JwI+OOz1jp2I8sRWQPWLAL7suCpS8n4vMOpna171pwgc/lVkJv5oYLz5XvYm+c5Bjvtrcrj/d648+tUl2P0TiGT6X1vi7TVmkPNBN1rx5xzw9ZRJiPB7Jjz1Fwya7B72CvHC1tjpsEZU/lgZMvxwk0D90moO+tl15v5xtCL2axDe/LSJgv6lHar/T4Bk+AVv6u7LnpDwsnM68fnY9PaAgZTxsxo89Jscku4q6grx/ZNo6lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-1.5947788 -3.795682 -6.8829794 ]\n [-2.4719803 -2.2934844 0.15027396]\n [ 0.28109637 0.9620622 0.1502772 ]\n [-0.8755215 -0.91515595 0.1502717 ]]", "desired_goal": "[[-1.4174088 0.12315598 -0.520749 ]\n [-0.02440863 -1.2517734 1.1430696 ]\n [-0.16473551 1.1045945 -1.0809187 ]\n [ 1.4966697 -1.648065 -1.0809187 ]]", "observation": "[[ 4.0502313e-01 -1.7083639e-01 2.8391490e+00 8.6561151e-02\n 4.1847038e-03 1.5934300e-02 1.6194769e+00 -1.5947788e+00\n -3.7956820e+00 -6.8829794e+00 -7.5961784e-03 -7.9109931e+00\n -7.4760243e-02 4.5925543e-02 1.3776971e-02 7.0202678e-02\n -2.5143246e-03 -1.5958101e-02 1.3222371e-03]\n [-1.5519576e+00 -2.8065484e+00 -9.3711394e-01 1.1629661e+00\n 2.3026696e-01 6.6071671e-01 -7.1785462e-01 -2.4719803e+00\n -2.2934844e+00 1.5027396e-01 -4.8693857e+00 2.0177471e-02\n -4.3004518e+00 4.5790251e-02 1.3833853e-02 7.0353873e-02\n -2.6817550e-03 -1.8071260e-02 1.5605575e-03]\n [-1.0539741e-01 5.3031021e-01 -5.3652316e-01 1.7099229e-01\n -2.6902267e-01 -2.2223072e-01 1.3661149e+00 2.8109637e-01\n 9.6206218e-01 1.5027720e-01 -7.5939405e-03 2.0062113e-02\n -2.6160151e-02 4.6088669e-02 1.3798331e-02 7.0207819e-02\n -2.5445980e-03 -1.5959276e-02 1.3939571e-03]\n [ 1.1645942e+00 -7.9697549e-01 1.6261020e+00 -2.5703776e-01\n -9.7408617e-01 -3.3307657e-02 -7.1784365e-01 -8.7552148e-01\n -9.1515595e-01 1.5027170e-01 -7.6402430e-03 2.0130012e-02\n -2.5220953e-02 4.6255581e-02 1.3984829e-02 7.0202678e-02\n -2.5143116e-03 -1.5958089e-02 1.6662030e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAg6U/PAwEN70K16M8O+GnPCmx+j0K16M8oOduPfIvBD4K16M83s/SPRVbAL4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvtnmvGqzyL29iQU+KvVOPUXzTb2UlME9H+BePaPE/b0K16M8G2epvSyZ0r00u6U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAg6U/PAwEN70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADvhpzwpsfo9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACg52498i8EPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAA3s/SPRVbAL4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.01169718 -0.04468159 0.02 ]\n [ 0.02049314 0.12240822 0.02 ]\n [ 0.05832636 0.12908915 0.02 ]\n [ 0.10293554 -0.12534745 0.02 ]]", "desired_goal": "[[-0.02818 -0.09799846 0.13040824]\n [ 0.05052678 -0.05028083 0.09452167]\n [ 0.05441296 -0.12391021 0.02 ]\n [-0.08271619 -0.10283121 0.08092347]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.1697176e-02\n -4.4681594e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0493140e-02\n 1.2240822e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 5.8326364e-02\n 1.2908915e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0293554e-01\n -1.2534745e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpXoC7sfJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX1MKkVN6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXx3m/336dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXyh55Z8sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX5m+9Jz1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYGMJx//edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYC150KZ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYDMpXp4bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYKdAX2ugdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYXp6QeV+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYUW0Z3s5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYU8R15jZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYcGYKIBSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYpF9BrvcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYl6YVqN7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYl8ujASGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYtSydFvydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY6xgy/KydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY3b1h9b5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY6mrsByTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZEBC2MKkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZUMpG4I9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZRMx46fbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZYY593KTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZh29US7HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZzEJ8fFKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZwCLl3hXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ4lTvRZ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaCZZjhDPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaSLaEi+tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaPEORT0hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaXALApKBdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpaXorFwT/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpagpiI+GHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaxWZ7XxwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpauZ/b0vodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaxBFd9lVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpa4CY1He8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbFHuZ1FIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbCD0th/idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbCznq3VkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbJrGR3eOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbWYgJTl1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbTEXUH6edX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbUjFqBVddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbbrns9jgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbqJu/DcedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbm4qXnhbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpboB9kSVXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbu7ulXRxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb8SeRPoFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb49Gy5ZsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb7ikfs/qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcEsTviLmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcV3qiXY2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcS2VNYbLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcaZNXYDldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcjrYf4h2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpc1NQj2SMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcyNX5nDjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpc7pf6XSjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpdE8GC7K8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpdWTVUdaMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpdTTLns9kdX2UKGgGR8BCgAAAAAAAaAdLJmgIR0CpdU/3nIQwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpdpKcEvCedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpd8f+S8radX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpd5N+so2GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpd2OHWSU1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpeB4RdyDJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpePguZkTYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpeMUdJaq0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpeJR+BpYcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpeT9g4OtodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpehEn1FpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cped9Gqgh9dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpeeTasZHedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpealwDNhWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpemZggHNYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpezb+cYqHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpewdzGPxQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpetOvllshdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpe4yWZ7XydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfGG0eEIxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfDHDJlredX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpe/jBl+VkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfLhUR3/xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfYwWN3nqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfV0A1ejVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfSsPrfLtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfeHfl6qsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpfral1r6+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfodupCKKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpflX4sVcmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpfxCwKSgXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpf+nfdhy9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpf7mxD9fkdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpf76OYIBzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpf4bWVeKLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpgD8CPp6hdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (840 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-31T23:28:24.046607"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39e3bb6a7a70047a58c0b3beb017e42e77c0e6e4cc73bb5143ed124d75e7f5f8
|
3 |
+
size 3013
|