chart-pattern-locator / utils /functionalPatternLocateAndPlot.py
yasirapunsith's picture
add files
c9b7b21
# import matplotlib
# matplotlib.use('Agg')
from scipy.signal import find_peaks
from utils.formatAndPreprocessNewPatterns import get_pattern_encoding
path = 'Datasets/OHLC data'
pattern_encoding = get_pattern_encoding()
def calc_head_and_sholder_top(row,ohlc_data_pattern_segment):
high_prices = ohlc_data_pattern_segment['High'].values
low_prices = ohlc_data_pattern_segment['Low'].values
# Adjust this parameter to suit your data – lower values detect smaller features.
prominence_value = 0.1
# Find peaks (local maxima)
peak_indices, _ = find_peaks(high_prices, prominence=prominence_value)
# Find valleys (local minima) by inverting the low prices
valley_indices, _ = find_peaks(-low_prices, prominence=prominence_value)
# create a list of dates for peaks and valleys
peak_dates = ohlc_data_pattern_segment['Date'].iloc[peak_indices]
valley_dates = ohlc_data_pattern_segment['Date'].iloc[valley_indices]
if len(peak_indices) < 3 or len(valley_indices) < 2:
print("Not enough peaks and valleys to form a Head & Shoulders pattern.")
return
try:
H_index = np.argmax(high_prices[peak_indices])
H = peak_indices[H_index]
LS_index = np.argmax(high_prices[peak_indices[0:H_index]])
LS = peak_indices[LS_index]
RS_index = np.argmax(high_prices[peak_indices[H_index+1:]]) + H_index + 1
RS = peak_indices[RS_index]
vally_left = valley_indices[(valley_indices > LS) & (valley_indices < H)]
vally_right = valley_indices[(valley_indices > H) & (valley_indices < RS)]
NL1 = vally_left[np.argmin(low_prices[vally_left])]
NL2 = vally_right[np.argmin(low_prices[vally_right])]
# Ensure the middle peak is the highest
if high_prices[H] <= max(high_prices[LS], high_prices[RS]):
print("Not a valid Head & Shoulders pattern.")
return
LS_date = ohlc_data_pattern_segment['Date'].iloc[LS]
H_date = ohlc_data_pattern_segment['Date'].iloc[H]
RS_date = ohlc_data_pattern_segment['Date'].iloc[RS]
NL1_date = ohlc_data_pattern_segment['Date'].iloc[NL1]
NL2_date = ohlc_data_pattern_segment['Date'].iloc[NL2]
# add the dates to the row
row['HS_Left_Shoulder'] = LS_date
row['HS_Head'] = H_date
row['HS_Right_Shoulder'] = RS_date
row['HS_Neckline_1'] = NL1_date
row['HS_Neckline_2'] = NL2_date
row['Peak_Dates'] = peak_dates
row['Valley_Dates'] = valley_dates
row['Calc_Start'] = LS_date
row['Calc_End'] = RS_date
return row
except:
print("Error in finding the peaks or valleys in the Head and Shoulders pattern")
return
def calc_head_and_shoulder_bottom(row, ohlc_data_pattern_segment):
high_prices = ohlc_data_pattern_segment['High'].values
low_prices = ohlc_data_pattern_segment['Low'].values
# Adjust this parameter to suit your data – lower values detect smaller features.
prominence_value = 0.1
# Find valleys (local minima)
valley_indices, _ = find_peaks(-low_prices, prominence=prominence_value)
# Find peaks (local maxima)
peak_indices, _ = find_peaks(high_prices, prominence=prominence_value)
# Create lists of dates for valleys and peaks
valley_dates = ohlc_data_pattern_segment['Date'].iloc[valley_indices]
peak_dates = ohlc_data_pattern_segment['Date'].iloc[peak_indices]
if len(valley_indices) < 3 or len(peak_indices) < 2:
print("Not enough valleys and peaks to form a Head & Shoulders Bottom pattern.")
return
try:
H_index = np.argmin(low_prices[valley_indices]) # Find lowest valley (Head)
H = valley_indices[H_index]
LS_index = np.argmin(low_prices[valley_indices[0:H_index]])
LS = valley_indices[LS_index]
RS_index = np.argmin(low_prices[valley_indices[H_index+1:]]) + H_index + 1
RS = valley_indices[RS_index]
peak_left = peak_indices[(peak_indices > LS) & (peak_indices < H)]
peak_right = peak_indices[(peak_indices > H) & (peak_indices < RS)]
NL1 = peak_left[np.argmax(high_prices[peak_left])]
NL2 = peak_right[np.argmax(high_prices[peak_right])]
# Ensure the middle valley is the lowest
if low_prices[H] >= min(low_prices[LS], low_prices[RS]):
print("Not a valid Head & Shoulders Bottom pattern.")
return
LS_date = ohlc_data_pattern_segment['Date'].iloc[LS]
H_date = ohlc_data_pattern_segment['Date'].iloc[H]
RS_date = ohlc_data_pattern_segment['Date'].iloc[RS]
NL1_date = ohlc_data_pattern_segment['Date'].iloc[NL1]
NL2_date = ohlc_data_pattern_segment['Date'].iloc[NL2]
# Add the detected pattern data to the row
row['HS_Left_Shoulder'] = LS_date
row['HS_Head'] = H_date
row['HS_Right_Shoulder'] = RS_date
row['HS_Neckline_1'] = NL1_date
row['HS_Neckline_2'] = NL2_date
row['Valley_Dates'] = valley_dates
row['Peak_Dates'] = peak_dates
row['Calc_Start'] = LS_date
row['Calc_End'] = RS_date
return row
except:
print("Error in finding the valleys or peaks in the Head and Shoulders Bottom pattern")
return
def calc_double_top_aa(row,ohlc_data_pattern_segment):
high_prices = ohlc_data_pattern_segment['High'].values
low_prices = ohlc_data_pattern_segment['Low'].values
# Adjust this parameter to suit your data – lower values detect smaller features.
prominence_value = 0.1
# Find peaks (local maxima)
peak_indices, _ = find_peaks(high_prices, prominence=prominence_value)
# Find valleys (local minima) by inverting the low prices
valley_indices, _ = find_peaks(-low_prices, prominence=prominence_value)
# create a list of dates for peaks and valleys
peak_dates = ohlc_data_pattern_segment['Date'].iloc[peak_indices]
valley_dates = ohlc_data_pattern_segment['Date'].iloc[valley_indices]
if len(peak_indices) < 2 or len(valley_indices) < 1:
print("Not enough peaks and valleys to form a Double Top pattern.")
return
try:
H1_index = np.argmax(high_prices[peak_indices])
H1 = peak_indices[H1_index]
H2_index = np.argmax(high_prices[peak_indices[H1_index+1:]]) + H1_index + 1
H2 = peak_indices[H2_index]
# get v index that is between H1 and H2
valley_indices_between_H1_H2 = valley_indices[(valley_indices > H1) & (valley_indices < H2)]
V = valley_indices_between_H1_H2[np.argmax(low_prices[ valley_indices_between_H1_H2])]
# # Ensure the middle peak is the highest
# if high_prices[H1] <= high_prices[H2]:
# print("Not a valid Double Top pattern.")
# return
H1_date = ohlc_data_pattern_segment['Date'].iloc[H1]
H2_date = ohlc_data_pattern_segment['Date'].iloc[H2]
V_date = ohlc_data_pattern_segment['Date'].iloc[V]
# add the dates to the row
row['DT_Peak_1'] = H1_date
row['DT_Peak_2'] = H2_date
row['DT_Valley'] = V_date
row['Peak_Dates'] = peak_dates
row['Valley_Dates'] = valley_dates
row['Calc_Start'] = H1_date
row['Calc_End'] = H2_date
return row
except:
print("Error in finding the peaks or valleys in the Double Top pattern")
return
def calc_double_bottom_aa(row,ohlc_data_pattern_segment):
high_prices = ohlc_data_pattern_segment['High'].values
low_prices = ohlc_data_pattern_segment['Low'].values
# Adjust this parameter to suit your data – lower values detect smaller features.
prominence_value = 0.05
# Find valleys (local minima)
valley_indices, _ = find_peaks(-low_prices, prominence=prominence_value)
# Find peaks (local maxima)
peak_indices, _ = find_peaks(high_prices, prominence=prominence_value)
# Create lists of dates for valleys and peaks
valley_dates = ohlc_data_pattern_segment['Date'].iloc[valley_indices]
peak_dates = ohlc_data_pattern_segment['Date'].iloc[peak_indices]
if len(valley_indices) < 2 or len(peak_indices) < 1:
print("Not enough valleys and peaks to form a Double Bottom pattern.")
return
try:
H1_index = np.argmin(low_prices[valley_indices])
H1 = valley_indices[H1_index]
H2_index = np.argmin(low_prices[valley_indices[H1_index+1:]]) + H1_index + 1
H2 = valley_indices[H2_index]
# get v index that is between H1 and H2
peak_indices_between_H1_H2 = peak_indices[(peak_indices > H1) & (peak_indices < H2)]
P = peak_indices_between_H1_H2[np.argmax(high_prices[ peak_indices_between_H1_H2])]
# # Ensure the middle valley is the lowest
# if low_prices[H1] >= low_prices[H2]:
# print("Not a valid Double Bottom pattern.")
# return
H1_date = ohlc_data_pattern_segment['Date'].iloc[H1]
H2_date = ohlc_data_pattern_segment['Date'].iloc[H2]
P_date = ohlc_data_pattern_segment['Date'].iloc[P]
# Add the detected pattern data to the row
row['DB_Valley_1'] = H1_date
row['DB_Valley_2'] = H2_date
row['DB_Peak'] = P_date
row['Valley_Dates'] = valley_dates
row['Peak_Dates'] = peak_dates
row['Calc_Start'] = H1_date
row['Calc_End'] = H2_date
return row
except:
print("Error in finding the valleys or peaks in the Double Bottom pattern")
return
def calc_double_bottom_ea(row,ohlc_data_pattern_segment):
high_prices = ohlc_data_pattern_segment['High'].values
low_prices = ohlc_data_pattern_segment['Low'].values
# Adjust this parameter to suit your data – lower values detect smaller features.
prominence_value = 0.1
# Find valleys (local minima)
valley_indices, _ = find_peaks(-low_prices, prominence=prominence_value)
# Find peaks (local maxima)
peak_indices, _ = find_peaks(high_prices, prominence=prominence_value)
round_vallies,_ = find_peaks(-low_prices, prominence=0.01,width=3,threshold=0.01)
# Create lists of dates for valleys and peaks
valley_dates = ohlc_data_pattern_segment['Date'].iloc[valley_indices]
peak_dates = ohlc_data_pattern_segment['Date'].iloc[peak_indices]
if len(valley_indices) < 2 or len(peak_indices) < 1:
print("Not enough valleys and peaks to form a Double Bottom pattern.")
return
try:
H1_index = np.argmin(low_prices[round_vallies])
H1 = valley_indices[H1_index]
H2_index = np.argmin(low_prices[valley_indices[H1_index+1:]]) + H1_index + 1
H2 = valley_indices[H2_index]
# get v index that is between H1 and H2
peak_indices_between_H1_H2 = peak_indices[(peak_indices > H1) & (peak_indices < H2)]
P = peak_indices_between_H1_H2[np.argmax(high_prices[ peak_indices_between_H1_H2])]
# # Ensure the middle valley is the lowest
# if low_prices[H1] >= low_prices[H2]:
# print("Not a valid Double Bottom pattern.")
# return
H1_date = ohlc_data_pattern_segment['Date'].iloc[H1]
H2_date = ohlc_data_pattern_segment['Date'].iloc[H2]
P_date = ohlc_data_pattern_segment['Date'].iloc[P]
# Add the detected pattern data to the row
row['DB_Valley_1'] = H1_date
row['DB_Valley_2'] = H2_date
row['DB_Peak'] = P_date
row['Valley_Dates'] = valley_dates
row['Peak_Dates'] = peak_dates
row['Calc_Start'] = H1_date
row['Calc_End'] = H2_date
return row
except:
print("Error in finding the valleys or peaks in the Double Bottom pattern")
return
# Commenting out all plotting functions
"""
import matplotlib.pyplot as plt
import mplfinance as mpf
import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import mplfinance as mpf
from scipy.signal import argrelextrema
from scipy.signal import find_peaks
def draw_head_and_shoulders_top(ax, ohlc_data, pat_start_idx,row):
Draws a Head and Shoulders pattern on an existing mplfinance plot and visualizes detected peaks and valleys.
Parameters:
ax (matplotlib.axes.Axes): The candlestick chart's axis.
ohlc_data (pd.DataFrame): Data containing 'High' and 'Low' columns.
# reset the index of the ohlc_data
ohlc_data.reset_index(drop=True, inplace=True)
high_prices = ohlc_data['High'].values
low_prices = ohlc_data['Low'].values
# check if 'Peak_Dates' and 'Valley_Dates' columns are present in the row
if 'Peak_Dates' in row and 'Valley_Dates' in row:
peak_days = row['Peak_Dates']
valley_days = row['Valley_Dates']
peak_indices = ohlc_data[ohlc_data['Date'].isin(peak_days)].index
# add the pat_start_idx to the peak_indices
peak_indices = peak_indices
valley_indices = ohlc_data[ohlc_data['Date'].isin(valley_days)].index
# add the pat_start_idx to the valley_indices
valley_indices = valley_indices
# Debugging visualization: Plot detected peaks and valleys
ax.scatter(peak_indices , high_prices[peak_indices], color='green', marker='^', label='Peaks', zorder=3)
ax.scatter(valley_indices, low_prices[valley_indices], color='red', marker='v', label='Valleys', zorder=3)
calc_start_date = row['Calc_Start']
calc_end_date = row['Calc_End']
calc_start_idx = ohlc_data[ohlc_data['Date']== calc_start_date].index
calc_end_idx = ohlc_data[ohlc_data['Date']== calc_end_date].index
# drow a pink dotted vertical line at calc_start_idx and calc_end_idx
ax.axvline(x=calc_start_idx, color='blue', linestyle='dotted', linewidth=1)
ax.axvline(x=calc_end_idx, color='blue', linestyle='dotted', linewidth=1)
LS_idx = ohlc_data[ohlc_data['Date']== row['HS_Left_Shoulder']].index
H_idx = ohlc_data[ohlc_data['Date']== row['HS_Head']].index
RS_idx = ohlc_data[ohlc_data['Date']== row['HS_Right_Shoulder']].index
NL1_idx = ohlc_data[ohlc_data['Date']== row['HS_Neckline_1']].index
NL2_idx = ohlc_data[ohlc_data['Date']== row['HS_Neckline_2']].index
# Draw the head and shoulders
ax.plot([LS_idx, H_idx, RS_idx], [high_prices[LS_idx], high_prices[H_idx], high_prices[RS_idx]],
linestyle="solid", marker="o", color="blue", linewidth=1, label="H&S Pattern")
# Use NL1_idx and NL2_idx as the x-range to keep the line within bounds
x_min, x_max = min(NL1_idx, NL2_idx), max(NL1_idx, NL2_idx)
# Compute the y-values using the line equation (y = mx + c)
slope = (low_prices[NL2_idx] - low_prices[NL1_idx]) / (NL2_idx - NL1_idx)
y_min = low_prices[NL1_idx] + slope * (x_min - NL1_idx)
y_max = low_prices[NL1_idx] + slope * (x_max - NL1_idx)
# Plot the line within the original graph size
ax.plot([x_min, x_max], [y_min, y_max],
linestyle="dashed", color="red", linewidth=1, label="Neckline")
def draw_head_and_shoulders_bottom(ax, ohlc_data, pat_start_idx,row):
Draws a Head and Shoulders pattern on an existing mplfinance plot and visualizes detected peaks and valleys.
Parameters:
ax (matplotlib.axes.Axes): The candlestick chart's axis.
ohlc_data (pd.DataFrame): Data containing 'High' and 'Low' columns.
# reset the index of the ohlc_data
ohlc_data.reset_index(drop=True, inplace=True)
high_prices = ohlc_data['High'].values
low_prices = ohlc_data['Low'].values
# check if 'Peak_Dates' and 'Valley_Dates' columns are present in the row
if 'Peak_Dates' in row and 'Valley_Dates' in row:
peak_days = row['Peak_Dates']
valley_days = row['Valley_Dates']
peak_indices = ohlc_data[ohlc_data['Date'].isin(peak_days)].index
# add the pat_start_idx to the peak_indices
peak_indices = peak_indices
valley_indices = ohlc_data[ohlc_data['Date'].isin(valley_days)].index
# add the pat_start_idx to the valley_indices
valley_indices = valley_indices
# Debugging visualization: Plot detected peaks and valleys
ax.scatter(peak_indices , high_prices[peak_indices], color='green', marker='^', label='Peaks', zorder=3)
ax.scatter(valley_indices, low_prices[valley_indices], color='red', marker='v', label='Valleys', zorder=3)
calc_start_date = row['Calc_Start']
calc_end_date = row['Calc_End']
calc_start_idx = ohlc_data[ohlc_data['Date']== calc_start_date].index
calc_end_idx = ohlc_data[ohlc_data['Date']== calc_end_date].index
# drow a pink dotted vertical line at calc_start_idx and calc_end_idx
ax.axvline(x=calc_start_idx, color='blue', linestyle='dotted', linewidth=1)
ax.axvline(x=calc_end_idx, color='blue', linestyle='dotted', linewidth=1)
LS_idx = ohlc_data[ohlc_data['Date']== row['HS_Left_Shoulder']].index
H_idx = ohlc_data[ohlc_data['Date']== row['HS_Head']].index
RS_idx = ohlc_data[ohlc_data['Date']== row['HS_Right_Shoulder']].index
NL1_idx = ohlc_data[ohlc_data['Date']== row['HS_Neckline_1']].index
NL2_idx = ohlc_data[ohlc_data['Date']== row['HS_Neckline_2']].index
# Draw the head and shoulders
ax.plot([LS_idx, H_idx, RS_idx], [low_prices[LS_idx], low_prices[H_idx], low_prices[RS_idx]],
linestyle="solid", marker="o", color="blue", linewidth=1, label="H&S Pattern")
# Use NL1_idx and NL2_idx as the x-range to keep the line within bounds
x_min, x_max = min(NL1_idx, NL2_idx), max(NL1_idx, NL2_idx)
# Compute the y-values using the line equation (y = mx + c)
slope = (high_prices[NL2_idx] - high_prices[NL1_idx]) / (NL2_idx - NL1_idx)
y_min = high_prices[NL1_idx] + slope * (x_min - NL1_idx)
y_max = high_prices[NL1_idx] + slope * (x_max - NL1_idx)
# Plot the line within the original graph size
ax.plot([x_min, x_max], [y_min, y_max],
linestyle="dashed", color="red", linewidth=1, label="Neckline")
def draw_double_top_aa(ax, ohlc_data, pat_start_idx,row):
Draws a Double Top pattern on an existing mplfinance plot and visualizes detected peaks and valleys.
Parameters:
ax (matplotlib.axes.Axes): The candlestick chart's axis.
ohlc_data (pd.DataFrame): Data containing 'High' and 'Low' columns.
# reset the index of the ohlc_data
ohlc_data.reset_index(drop=True, inplace=True)
high_prices = ohlc_data['High'].values
low_prices = ohlc_data['Low'].values
# check if 'Peak_Dates' and 'Valley_Dates' columns are present in the row
if 'Peak_Dates' in row and 'Valley_Dates' in row:
peak_days = row['Peak_Dates']
valley_days = row['Valley_Dates']
peak_indices = ohlc_data[ohlc_data['Date'].isin(peak_days)].index
# add the pat_start_idx to the peak_indices
peak_indices = peak_indices
valley_indices = ohlc_data[ohlc_data['Date'].isin(valley_days)].index
# add the pat_start_idx to the valley_indices
valley_indices = valley_indices
# Debugging visualization: Plot detected peaks and valleys
ax.scatter(peak_indices , high_prices[peak_indices], color='green', marker='^', label='Peaks', zorder=3)
ax.scatter(valley_indices, low_prices[valley_indices], color='red', marker='v', label='Valleys', zorder=3)
DT_Peak_1_idx = ohlc_data[ohlc_data['Date']== row['DT_Peak_1']].index
DT_Peak_2_idx = ohlc_data[ohlc_data['Date']== row['DT_Peak_2']].index
DT_Valley_idx = ohlc_data[ohlc_data['Date']== row['DT_Valley']].index
# draw the double peaks
ax.plot([DT_Peak_1_idx,DT_Valley_idx, DT_Peak_2_idx], [high_prices[DT_Peak_1_idx],high_prices[DT_Valley_idx], high_prices[DT_Peak_2_idx]],
linestyle="solid", marker="o", color="blue", linewidth=1, label="Double Top Pattern")
# Draw the neckline
ax.hlines(y=low_prices[DT_Valley_idx], xmin=ax.get_xlim()[0], xmax=ax.get_xlim()[1], color='red', linestyle='dotted', linewidth=1)
def draw_double_bottom_aa(ax, ohlc_data, pat_start_idx,row):
Draws a Double Bottom pattern on an existing mplfinance plot and visualizes detected peaks and valleys.
Parameters:
ax (matplotlib.axes.Axes): The candlestick chart's axis.
ohlc_data (pd.DataFrame): Data containing 'High' and 'Low' columns.
# reset the index of the ohlc_data
ohlc_data.reset_index(drop=True, inplace=True)
high_prices = ohlc_data['High'].values
low_prices = ohlc_data['Low'].values
# check if 'Peak_Dates' and 'Valley_Dates' columns are present in the row
if 'Peak_Dates' in row and 'Valley_Dates' in row:
peak_days = row['Peak_Dates']
valley_days = row['Valley_Dates']
peak_indices = ohlc_data[ohlc_data['Date'].isin(peak_days)].index
# add the pat_start_idx to the peak_indices
peak_indices = peak_indices
valley_indices = ohlc_data[ohlc_data['Date'].isin(valley_days)].index
# add the pat_start_idx to the valley_indices
valley_indices = valley_indices
# Debugging visualization: Plot detected peaks and valleys
ax.scatter(peak_indices , high_prices[peak_indices], color='green', marker='^', label='Peaks', zorder=3)
ax.scatter(valley_indices, low_prices[valley_indices], color='red', marker='v', label='Valleys', zorder=3)
DB_Valley_1_idx = ohlc_data[ohlc_data['Date']== row['DB_Valley_1']].index
DB_Valley_2_idx = ohlc_data[ohlc_data['Date']== row['DB_Valley_2']].index
DB_Peak_idx = ohlc_data[ohlc_data['Date']== row['DB_Peak']].index
# draw the double peaks
ax.plot([DB_Valley_1_idx,DB_Peak_idx, DB_Valley_2_idx], [low_prices[DB_Valley_1_idx],low_prices[DB_Peak_idx], low_prices[DB_Valley_2_idx]],
linestyle="solid", marker="o", color="blue", linewidth=1, label="Double Bottom Pattern")
# Draw the neckline
ax.hlines(y=high_prices[DB_Peak_idx], xmin=ax.get_xlim()[0], xmax=ax.get_xlim()[1], color='red', linestyle='dotted', linewidth=1)
def plot_pattern_clusters( test_pattern_segment_wise, ohcl_data_given=None, padding_days=0,draw_lines = False):
colors = ["blue", "green", "red", "cyan", "magenta", "yellow", "purple", "orange", "brown", "pink", "lime", "teal"]
group = test_pattern_segment_wise
if ohcl_data_given is None:
symbol = group['Symbol'].iloc[0]
ohcl_data = pd.read_csv(path + '/' + symbol + '.csv')
else:
ohcl_data = ohcl_data_given
ohcl_data['Date'] = pd.to_datetime(ohcl_data['Date'])
ohcl_data['Date'] = ohcl_data['Date'].dt.tz_localize(None)
seg_start = group['Seg_Start'].iloc[0] - pd.to_timedelta(padding_days, unit='D')
seg_end = group['Seg_End'].iloc[0] + pd.to_timedelta(padding_days, unit='D')
ohcl_data = ohcl_data[(ohcl_data['Date'] >= seg_start) & (ohcl_data['Date'] <= seg_end)]
if ohcl_data.empty:
print("OHLC Data set is empty")
return
ohlc_for_mpf = ohcl_data[['Open', 'High', 'Low', 'Close']].copy()
ohlc_for_mpf.index = pd.to_datetime(ohcl_data['Date'])
fig, axes = mpf.plot(ohlc_for_mpf, type='candle', style='charles', datetime_format='%Y-%m-%d', returnfig=True)
ax = axes[0]
for _, row in group.iterrows():
pattern_name = row['Chart Pattern']
cluster = row['Cluster']
color = "gray" if cluster == -1 else colors[cluster % len(colors)]
pattern_start_date = pd.to_datetime(row['Start']).tz_localize(None)
pattern_end_date = pd.to_datetime(row['End']).tz_localize(None)
num_start = len(ohcl_data[ohcl_data['Date'] < pattern_start_date])
num_end = num_start + len(ohcl_data[(ohcl_data['Date'] >= pattern_start_date) & (ohcl_data['Date'] <= pattern_end_date)])
ax.axvspan(num_start, num_end, color=color, alpha=0.1, label=pattern_name)
if draw_lines:
# error = row['Error'] check only if the column is present
error = False
if 'Error' in row and row['Error'] != np.nan:
error = row['Error']
if error != True:
calc_start_date = row['Calc_Start']
calc_end_date = row['Calc_End']
# reset the index of the ohlc_data
ohcl_data.reset_index(drop=True, inplace=True)
calc_start_idx = ohcl_data[ohcl_data['Date']== calc_start_date].index
calc_end_idx = ohcl_data[ohcl_data['Date']== calc_end_date].index
# drow a pink dotted vertical line at calc_start_idx and calc_end_idx
ax.axvline(x=calc_start_idx, color='blue', linestyle='dotted', linewidth=1)
ax.axvline(x=calc_end_idx, color='blue', linestyle='dotted', linewidth=1)
# # If detected pattern is Head and Shoulders, plot indicator lines
# if pattern_name == "Head-and-shoulders top":
# # get the ohlc segment of where the date is between the pattern start and end from ohlc_for_mpf data set where the index is the date
# ohlc_segment_head_and_sholder = ohlc_for_mpf.loc[pattern_start_date:pattern_end_date]
# draw_head_and_shoulders_top(ax, ohcl_data, num_start,row)
# elif pattern_name == "Head-and-shoulders bottom":
# # get the ohlc segment of where the date is between the pattern start and end from ohlc_for_mpf data set where the index is the date
# ohlc_segment_head_and_sholder = ohlc_for_mpf.loc[pattern_start_date:pattern_end_date]
# draw_head_and_shoulders_bottom(ax, ohcl_data, num_start,row)
# elif pattern_name == "Double Top, Adam and Adam":
# # get the ohlc segment of where the date is between the pattern start and end from ohlc_for_mpf data set where the index is the date
# ohlc_segment_double_top = ohlc_for_mpf.loc[pattern_start_date:pattern_end_date]
# draw_double_top_aa(ax, ohcl_data, num_start,row)
# elif pattern_name == "Double Bottom, Adam and Adam":
# ohlc_segment_double_top = ohlc_for_mpf.loc[pattern_start_date:pattern_end_date]
# draw_double_bottom_aa(ax, ohcl_data, num_start,row)
# elif pattern_name == "Double Bottom, Eve and Adam":
# ohlc_segment_double_top = ohlc_for_mpf.loc[pattern_start_date:pattern_end_date]
# draw_double_bottom_aa(ax, ohcl_data, num_start,row)
if draw_lines:
# Get unique legend handles and labels
handles, labels = ax.get_legend_handles_labels()
unique_labels = {}
unique_handles = []
# Initialize storage for unique handles/labels
unique_labels = {}
unique_handles = []
i= 1
for handle, label in zip(handles, labels):
# print(label)
# Allow duplication if the label is in pattern_encoding
if label in pattern_encoding or label not in unique_labels:
if label not in unique_labels:
unique_labels[label] = handle
unique_handles.append(handle)
else:
unique_labels[label + f"_{i}"] = handle
unique_handles.append(handle)
i += 1
ax.legend(unique_handles, unique_labels.keys())
ax.grid(True)
plt.show()
def plot_pattern_groups_and_finalized_sections(located_patterns_and_other_info, cluster_labled_windows_df ,ohcl_data_given=None):
# for each unique Chart Pattern in located_patterns_and_other_info plot the patterns
for pattern, group in located_patterns_and_other_info.groupby('Chart Pattern'):
# pattern = 'Head-and-shoulders top'
print (pattern ," :")
print(" Clustered Windows :")
plot_pattern_clusters( cluster_labled_windows_df[cluster_labled_windows_df['Chart Pattern'] == pattern],ohcl_data_given=ohcl_data_given)
print(" Finalized Section :")
plot_pattern_clusters( located_patterns_and_other_info[located_patterns_and_other_info['Chart Pattern'] == pattern],draw_lines=True,ohcl_data_given=ohcl_data_given)
"""