Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1297.93 +/- 396.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32be61a67999ff639b9a9cf9f813ff11670df3c45965789fcfab45f2cda0c1b6
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f747c4a99d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f747c4a9a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f747c4a9af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f747c4a9b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f747c4a9c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f747c4a9ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f747c4a9d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f747c4a9dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f747c4a9e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f747c4a9ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f747c4a9f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f747c4af040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f747c4aa1b0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677011112868182720,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANlBYT+wR7G/nVTsPQoq2T/sRUw/vNtWv3HGib5WUT6/JiUPPyJzDr+4mBM/wwxXPuHOez5IGVa+YsCRPnSE9z8yWU0/8fnfvsEN+L4KW3K/1ofrvh1GCMBQDrs/9d/Fvhm1nb/CXxc/VD4CPxizUD+HtY8/MNrqv6ar5b7Xqak/bvqFPzP3M7+Ybns+53dovx8u+z5UOx4/+GgdPyQ4Sj+yH4y9nZ5FPf61GT0KyUxApAuUP1FoT7/sMsa+r8CaPr6/1b6Zr6Y/tcpaP+jSlr8ZtZ2/wl8XP1Q+Aj+nAp2/6xsGP5vjYb+zCew+AFjcP4MDzL5gsbU/Cn6OPsG/Tr8XNrk9ujmuPwEdrT/fLJk+xvw9v5AUr78PjSk/mr7aP+0mfjyMSqO/H+fEPmyeTj8xRRa/LQK2Pa1Mg78Y4MY+GbWdv2t42L9UPgI/pwKdv5wpKT8fS5s91soLPyueurxUBZ8/O0W4v8He5D48lc8/9DwZP9qqjUCIJHA+bQcawJZObz6HIbFAuAMHwLaySsB0D2y/gNJJQJCU+r8vFZy/OSmAPwkhZkApEBm/Dh8pP/XGTz9reNi/VD4CP6cCnb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAxmZ+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+FK0PAAAAADwaPW/AAAAAAImHr0AAAAAWwLuPwAAAABcoNy9AAAAANzm+j8AAAAAsgYDvgAAAABz8t6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFF1ZtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBgvH70AAAAAm/jrvwAAAABFls49AAAAALTz+T8AAAAAMm4JvgAAAADei+s/AAAAAF5pGj0AAAAA3u35vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN/+QDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBYj5u9AAAAAHc94r8AAAAAKqJZvAAAAADwk+8/AAAAAKbv0zsAAAAAAgXaPwAAAADPnB09AAAAALgI6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL2Ie2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJFIKPgAAAAC/5fm/AAAAAG2nfr0AAAAAotPmPwAAAADsqb49AAAAAHWp4T8AAAAAwqiUPQAAAACKqfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcfZQ/HHWCMAWyUTegDjAF0lEdAq04OZssQNHV9lChoBkdAlvPZnHvMKWgHTegDaAhHQKtPOiJO32F1fZQoaAZHQJQOCfe1rqNoB03oA2gIR0CrU2Q2uPmxdX2UKGgGR0CaUOf3N9piaAdN6ANoCEdAq11L8xbjcXV9lChoBkdAmvrmnGbTdGgHTegDaAhHQKtdXXbuc+d1fZQoaAZHQIvsBV0cOsloB03oA2gIR0CrXhyO7xusdX2UKGgGR0CViD2icoYvaAdN6ANoCEdAq2Cww482aXV9lChoBkdAlff/XCj1w2gHTegDaAhHQKtqXx2B8QZ1fZQoaAZHQJfdUi7kGRpoB03oA2gIR0CranqFIuoQdX2UKGgGR0CX9qlqrR0EaAdN6ANoCEdAq2uXcer+53V9lChoBkdAjXKtLL6k7GgHTegDaAhHQKtvgmTC+Dh1fZQoaAZHQJCw/kJa7mNoB03oA2gIR0CrehRZdOZcdX2UKGgGR0CUgQgNgBtDaAdN6ANoCEdAq3omU+s5n3V9lChoBkdAmcIuJ+DvmmgHTegDaAhHQKt65whGH591fZQoaAZHQJfpa9Jz1btoB03oA2gIR0CrfYX/o7mudX2UKGgGR0CVz5Cj1wo9aAdN6ANoCEdAq4aoNTcZcnV9lChoBkdAmjr12eQMhGgHTegDaAhHQKuGuQ5myxB1fZQoaAZHQJqZMd7v5QBoB03oA2gIR0Crh3fGdZq3dX2UKGgGR0CPCF8l5WzXaAdN6ANoCEdAq4tGeFtbcHV9lChoBkdAkKF4y44IbGgHTegDaAhHQKuW76DXe3x1fZQoaAZHQJJ9jH2h7E5oB03oA2gIR0CrlwHxz7uVdX2UKGgGR0CTBpXuE25yaAdN6ANoCEdAq5fJuMuOCHV9lChoBkdAkWFpRoAXEmgHTegDaAhHQKuabI91U2l1fZQoaAZHQJXWk9vCMxZoB03oA2gIR0Cro5+9SMtLdX2UKGgGR0CTop8nNPgvaAdN6ANoCEdAq6Ox/CqIanV9lChoBkdAjFCDP4VRDWgHTegDaAhHQKukdmITGo91fZQoaAZHQJE/9oUSIxhoB03oA2gIR0Crp5iemNzbdX2UKGgGR0CRfz1sLv1EaAdN6ANoCEdAq7QjvTgEU3V9lChoBkdAkRwBnanJk2gHTegDaAhHQKu0NZ6lchV1fZQoaAZHQJFQI1BMSK5oB03oA2gIR0CrtPq3/givdX2UKGgGR0CV8Skqc3ERaAdN6ANoCEdAq7etEkSmInV9lChoBkdAlE90wztTk2gHTegDaAhHQKvA8NYKYzB1fZQoaAZHQIeDhFCswL5oB03oA2gIR0CrwQJJXhfjdX2UKGgGR0CLIOVUMoc8aAdN6ANoCEdAq8HGHWSU1XV9lChoBkdAlkVyJXQtz2gHTegDaAhHQKvEYwUxmCl1fZQoaAZHQIwVCTINmUZoB03oA2gIR0Cr0as0pEx7dX2UKGgGR0CNYVVnVXmvaAdN6ANoCEdAq9G+sLfDUHV9lChoBkdAkVfcSK3uu2gHTegDaAhHQKvSiz9jwx51fZQoaAZHQJBu+0LMLWtoB03oA2gIR0Cr1SR3eN1hdX2UKGgGR0CUOG0AcT8HaAdN6ANoCEdAq95ZnlGPP3V9lChoBkdAlthODaoMrmgHTegDaAhHQKvea7o0Q9R1fZQoaAZHQJapeo2n889oB03oA2gIR0Cr3y0+kgwHdX2UKGgGR0CUGxHvttygaAdN6ANoCEdAq+HCxeLNwHV9lChoBkdAkIwyq2jO9mgHTegDaAhHQKvu3yYG+sZ1fZQoaAZHQJX9DRTjvNNoB03oA2gIR0Cr7vFCCz1LdX2UKGgGR0CWKz3Zwn6VaAdN6ANoCEdAq++zhUBGQXV9lChoBkdAld5sx46fa2gHTegDaAhHQKvyS6Oo5xR1fZQoaAZHQJQDDlLeyiVoB03oA2gIR0Cr+44NAkcCdX2UKGgGR0CUyeQO4G2UaAdN6ANoCEdAq/ufgaWHDnV9lChoBkdAljei8OCoTGgHTegDaAhHQKv8XwVCXyB1fZQoaAZHQJWlEMjNY8xoB03oA2gIR0Cr/vmPPszEdX2UKGgGR0CXaQMFlkH2aAdN6ANoCEdArAuLTx5LRXV9lChoBkdAizQpHy3CsWgHTegDaAhHQKwLqoy9EkV1fZQoaAZHQJa86H9FWn1oB03oA2gIR0CsDMDU3GXHdX2UKGgGR0CVE5T4tYjjaAdN6ANoCEdArA9iLsKLKnV9lChoBkdAlkFRMajveGgHTegDaAhHQKwYbgBtDUp1fZQoaAZHQJUiy94/u9hoB03oA2gIR0CsGIAaFVT8dX2UKGgGR0CUtf5Qgs9TaAdN6ANoCEdArBk/KfWc0HV9lChoBkdAkv4ha1TisGgHTegDaAhHQKwb4ZAIIGB1fZQoaAZHQJUh1bor4FloB03oA2gIR0CsJxQxN7BwdX2UKGgGR0CRIQk8ifQKaAdN6ANoCEdArCcw2Q4jr3V9lChoBkdAlkhBmCiAUmgHTegDaAhHQKwoYbo8p1B1fZQoaAZHQJgSHjkuHvdoB03oA2gIR0CsLO3dCVrzdX2UKGgGR0CVOw3PAwfyaAdN6ANoCEdArDilRk3CK3V9lChoBkdAmCw7OzIFNmgHTegDaAhHQKw4uBT4tYl1fZQoaAZHQJkfkJv5xipoB03oA2gIR0CsOYfsNUfgdX2UKGgGR0CX9MtFKCg9aAdN6ANoCEdArDxGbb1yvXV9lChoBkdAmDpW6ClJpWgHTegDaAhHQKxIIHJtBOZ1fZQoaAZHQJkdo8xKxs5oB03oA2gIR0CsSDyFfzBidX2UKGgGR0CW8G3RG+bmaAdN6ANoCEdArEltKf4AS3V9lChoBkdAljOEi+tbLWgHTegDaAhHQKxMTyH2ys11fZQoaAZHQJgVxXQtz0ZoB03oA2gIR0CsVWBPbfxddX2UKGgGR0CYSH4gRsdlaAdN6ANoCEdArFVyFEiMYXV9lChoBkdAkCTfx6OYIGgHTegDaAhHQKxWNkQPI4l1fZQoaAZHQJTfV70Fr2xoB03oA2gIR0CsWMJmNBGAdX2UKGgGR0CW3PlyimEXaAdN6ANoCEdArGMaVlf7anV9lChoBkdAhfLg+IMz/WgHTegDaAhHQKxjOTnq3Vl1fZQoaAZHQJMmTLLZBcBoB03oA2gIR0CsZGTGgi/xdX2UKGgGR0CUSCHNorWiaAdN6ANoCEdArGhYUi6g/XV9lChoBkdAldEP/m1YyWgHTegDaAhHQKxxsMpgCwN1fZQoaAZHQJQlaNsFdLRoB03oA2gIR0CsccGiQDFIdX2UKGgGR0CWwUDU3GXHaAdN6ANoCEdArHJ/m7rcCnV9lChoBkdAkfyhSDRMOGgHTegDaAhHQKx1D8aXKKZ1fZQoaAZHQJpcT3K0UoNoB03oA2gIR0CsfrkLYwqRdX2UKGgGR0CV56lyzXz2aAdN6ANoCEdArH7S4FzMinV9lChoBkdAmoEU61b7j2gHTegDaAhHQKx/3tzCDVZ1fZQoaAZHQJis+RlpXZJoB03oA2gIR0Csg8m65Gz9dX2UKGgGR0Bw5ps1sLv1aAdNmgFoCEdArIo6QA+6iHV9lChoBkdAmXJyylenh2gHTegDaAhHQKyOL9sJpnJ1fZQoaAZHQJhRAekpI+ZoB03oA2gIR0CsjkEhq0tzdX2UKGgGR0CXh6vA44p+aAdN6ANoCEdArI8HkPtlZ3V9lChoBkdAkswIrSVnmWgHTegDaAhHQKyWmH2ys0Z1fZQoaAZHQJarKA4GUwBoB03oA2gIR0CsmoAZbY9QdX2UKGgGR0CaeQdbgTAWaAdN6ANoCEdArJqSX0Gu93V9lChoBkdAmb0fQBxPwmgHTegDaAhHQKybV0btJFt1fZQoaAZHQJszp+uvECNoB03oA2gIR0Cspq7aqS5idX2UKGgGR0Cb+0ulGgBcaAdN6ANoCEdArKqjpu/DcnV9lChoBkdAmdVKRyOrAGgHTegDaAhHQKyqtfgrH2h1fZQoaAZHQJksQeZG8VZoB03oA2gIR0Csq35c9nscdX2UKGgGR0CcUcasp5NXaAdN6ANoCEdArLMLP+n623VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fae52822608001282ba562b0d9169ef56c48159eaeffeeb7731d54ee451dea9
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a0bd6c60b7c10289f7fc14dcdfa63ef0f2151a9fc2a0428c95e09dcb4351626
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f747c4a99d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f747c4a9a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f747c4a9af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f747c4a9b80>", "_build": "<function ActorCriticPolicy._build at 0x7f747c4a9c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f747c4a9ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f747c4a9d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f747c4a9dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f747c4a9e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f747c4a9ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f747c4a9f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f747c4af040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f747c4aa1b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677011112868182720, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANlBYT+wR7G/nVTsPQoq2T/sRUw/vNtWv3HGib5WUT6/JiUPPyJzDr+4mBM/wwxXPuHOez5IGVa+YsCRPnSE9z8yWU0/8fnfvsEN+L4KW3K/1ofrvh1GCMBQDrs/9d/Fvhm1nb/CXxc/VD4CPxizUD+HtY8/MNrqv6ar5b7Xqak/bvqFPzP3M7+Ybns+53dovx8u+z5UOx4/+GgdPyQ4Sj+yH4y9nZ5FPf61GT0KyUxApAuUP1FoT7/sMsa+r8CaPr6/1b6Zr6Y/tcpaP+jSlr8ZtZ2/wl8XP1Q+Aj+nAp2/6xsGP5vjYb+zCew+AFjcP4MDzL5gsbU/Cn6OPsG/Tr8XNrk9ujmuPwEdrT/fLJk+xvw9v5AUr78PjSk/mr7aP+0mfjyMSqO/H+fEPmyeTj8xRRa/LQK2Pa1Mg78Y4MY+GbWdv2t42L9UPgI/pwKdv5wpKT8fS5s91soLPyueurxUBZ8/O0W4v8He5D48lc8/9DwZP9qqjUCIJHA+bQcawJZObz6HIbFAuAMHwLaySsB0D2y/gNJJQJCU+r8vFZy/OSmAPwkhZkApEBm/Dh8pP/XGTz9reNi/VD4CP6cCnb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAxmZ+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+FK0PAAAAADwaPW/AAAAAAImHr0AAAAAWwLuPwAAAABcoNy9AAAAANzm+j8AAAAAsgYDvgAAAABz8t6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFF1ZtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBgvH70AAAAAm/jrvwAAAABFls49AAAAALTz+T8AAAAAMm4JvgAAAADei+s/AAAAAF5pGj0AAAAA3u35vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN/+QDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBYj5u9AAAAAHc94r8AAAAAKqJZvAAAAADwk+8/AAAAAKbv0zsAAAAAAgXaPwAAAADPnB09AAAAALgI6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL2Ie2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJFIKPgAAAAC/5fm/AAAAAG2nfr0AAAAAotPmPwAAAADsqb49AAAAAHWp4T8AAAAAwqiUPQAAAACKqfi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcfZQ/HHWCMAWyUTegDjAF0lEdAq04OZssQNHV9lChoBkdAlvPZnHvMKWgHTegDaAhHQKtPOiJO32F1fZQoaAZHQJQOCfe1rqNoB03oA2gIR0CrU2Q2uPmxdX2UKGgGR0CaUOf3N9piaAdN6ANoCEdAq11L8xbjcXV9lChoBkdAmvrmnGbTdGgHTegDaAhHQKtdXXbuc+d1fZQoaAZHQIvsBV0cOsloB03oA2gIR0CrXhyO7xusdX2UKGgGR0CViD2icoYvaAdN6ANoCEdAq2Cww482aXV9lChoBkdAlff/XCj1w2gHTegDaAhHQKtqXx2B8QZ1fZQoaAZHQJfdUi7kGRpoB03oA2gIR0CranqFIuoQdX2UKGgGR0CX9qlqrR0EaAdN6ANoCEdAq2uXcer+53V9lChoBkdAjXKtLL6k7GgHTegDaAhHQKtvgmTC+Dh1fZQoaAZHQJCw/kJa7mNoB03oA2gIR0CrehRZdOZcdX2UKGgGR0CUgQgNgBtDaAdN6ANoCEdAq3omU+s5n3V9lChoBkdAmcIuJ+DvmmgHTegDaAhHQKt65whGH591fZQoaAZHQJfpa9Jz1btoB03oA2gIR0CrfYX/o7mudX2UKGgGR0CVz5Cj1wo9aAdN6ANoCEdAq4aoNTcZcnV9lChoBkdAmjr12eQMhGgHTegDaAhHQKuGuQ5myxB1fZQoaAZHQJqZMd7v5QBoB03oA2gIR0Crh3fGdZq3dX2UKGgGR0CPCF8l5WzXaAdN6ANoCEdAq4tGeFtbcHV9lChoBkdAkKF4y44IbGgHTegDaAhHQKuW76DXe3x1fZQoaAZHQJJ9jH2h7E5oB03oA2gIR0CrlwHxz7uVdX2UKGgGR0CTBpXuE25yaAdN6ANoCEdAq5fJuMuOCHV9lChoBkdAkWFpRoAXEmgHTegDaAhHQKuabI91U2l1fZQoaAZHQJXWk9vCMxZoB03oA2gIR0Cro5+9SMtLdX2UKGgGR0CTop8nNPgvaAdN6ANoCEdAq6Ox/CqIanV9lChoBkdAjFCDP4VRDWgHTegDaAhHQKukdmITGo91fZQoaAZHQJE/9oUSIxhoB03oA2gIR0Crp5iemNzbdX2UKGgGR0CRfz1sLv1EaAdN6ANoCEdAq7QjvTgEU3V9lChoBkdAkRwBnanJk2gHTegDaAhHQKu0NZ6lchV1fZQoaAZHQJFQI1BMSK5oB03oA2gIR0CrtPq3/givdX2UKGgGR0CV8Skqc3ERaAdN6ANoCEdAq7etEkSmInV9lChoBkdAlE90wztTk2gHTegDaAhHQKvA8NYKYzB1fZQoaAZHQIeDhFCswL5oB03oA2gIR0CrwQJJXhfjdX2UKGgGR0CLIOVUMoc8aAdN6ANoCEdAq8HGHWSU1XV9lChoBkdAlkVyJXQtz2gHTegDaAhHQKvEYwUxmCl1fZQoaAZHQIwVCTINmUZoB03oA2gIR0Cr0as0pEx7dX2UKGgGR0CNYVVnVXmvaAdN6ANoCEdAq9G+sLfDUHV9lChoBkdAkVfcSK3uu2gHTegDaAhHQKvSiz9jwx51fZQoaAZHQJBu+0LMLWtoB03oA2gIR0Cr1SR3eN1hdX2UKGgGR0CUOG0AcT8HaAdN6ANoCEdAq95ZnlGPP3V9lChoBkdAlthODaoMrmgHTegDaAhHQKvea7o0Q9R1fZQoaAZHQJapeo2n889oB03oA2gIR0Cr3y0+kgwHdX2UKGgGR0CUGxHvttygaAdN6ANoCEdAq+HCxeLNwHV9lChoBkdAkIwyq2jO9mgHTegDaAhHQKvu3yYG+sZ1fZQoaAZHQJX9DRTjvNNoB03oA2gIR0Cr7vFCCz1LdX2UKGgGR0CWKz3Zwn6VaAdN6ANoCEdAq++zhUBGQXV9lChoBkdAld5sx46fa2gHTegDaAhHQKvyS6Oo5xR1fZQoaAZHQJQDDlLeyiVoB03oA2gIR0Cr+44NAkcCdX2UKGgGR0CUyeQO4G2UaAdN6ANoCEdAq/ufgaWHDnV9lChoBkdAljei8OCoTGgHTegDaAhHQKv8XwVCXyB1fZQoaAZHQJWlEMjNY8xoB03oA2gIR0Cr/vmPPszEdX2UKGgGR0CXaQMFlkH2aAdN6ANoCEdArAuLTx5LRXV9lChoBkdAizQpHy3CsWgHTegDaAhHQKwLqoy9EkV1fZQoaAZHQJa86H9FWn1oB03oA2gIR0CsDMDU3GXHdX2UKGgGR0CVE5T4tYjjaAdN6ANoCEdArA9iLsKLKnV9lChoBkdAlkFRMajveGgHTegDaAhHQKwYbgBtDUp1fZQoaAZHQJUiy94/u9hoB03oA2gIR0CsGIAaFVT8dX2UKGgGR0CUtf5Qgs9TaAdN6ANoCEdArBk/KfWc0HV9lChoBkdAkv4ha1TisGgHTegDaAhHQKwb4ZAIIGB1fZQoaAZHQJUh1bor4FloB03oA2gIR0CsJxQxN7BwdX2UKGgGR0CRIQk8ifQKaAdN6ANoCEdArCcw2Q4jr3V9lChoBkdAlkhBmCiAUmgHTegDaAhHQKwoYbo8p1B1fZQoaAZHQJgSHjkuHvdoB03oA2gIR0CsLO3dCVrzdX2UKGgGR0CVOw3PAwfyaAdN6ANoCEdArDilRk3CK3V9lChoBkdAmCw7OzIFNmgHTegDaAhHQKw4uBT4tYl1fZQoaAZHQJkfkJv5xipoB03oA2gIR0CsOYfsNUfgdX2UKGgGR0CX9MtFKCg9aAdN6ANoCEdArDxGbb1yvXV9lChoBkdAmDpW6ClJpWgHTegDaAhHQKxIIHJtBOZ1fZQoaAZHQJkdo8xKxs5oB03oA2gIR0CsSDyFfzBidX2UKGgGR0CW8G3RG+bmaAdN6ANoCEdArEltKf4AS3V9lChoBkdAljOEi+tbLWgHTegDaAhHQKxMTyH2ys11fZQoaAZHQJgVxXQtz0ZoB03oA2gIR0CsVWBPbfxddX2UKGgGR0CYSH4gRsdlaAdN6ANoCEdArFVyFEiMYXV9lChoBkdAkCTfx6OYIGgHTegDaAhHQKxWNkQPI4l1fZQoaAZHQJTfV70Fr2xoB03oA2gIR0CsWMJmNBGAdX2UKGgGR0CW3PlyimEXaAdN6ANoCEdArGMaVlf7anV9lChoBkdAhfLg+IMz/WgHTegDaAhHQKxjOTnq3Vl1fZQoaAZHQJMmTLLZBcBoB03oA2gIR0CsZGTGgi/xdX2UKGgGR0CUSCHNorWiaAdN6ANoCEdArGhYUi6g/XV9lChoBkdAldEP/m1YyWgHTegDaAhHQKxxsMpgCwN1fZQoaAZHQJQlaNsFdLRoB03oA2gIR0CsccGiQDFIdX2UKGgGR0CWwUDU3GXHaAdN6ANoCEdArHJ/m7rcCnV9lChoBkdAkfyhSDRMOGgHTegDaAhHQKx1D8aXKKZ1fZQoaAZHQJpcT3K0UoNoB03oA2gIR0CsfrkLYwqRdX2UKGgGR0CV56lyzXz2aAdN6ANoCEdArH7S4FzMinV9lChoBkdAmoEU61b7j2gHTegDaAhHQKx/3tzCDVZ1fZQoaAZHQJis+RlpXZJoB03oA2gIR0Csg8m65Gz9dX2UKGgGR0Bw5ps1sLv1aAdNmgFoCEdArIo6QA+6iHV9lChoBkdAmXJyylenh2gHTegDaAhHQKyOL9sJpnJ1fZQoaAZHQJhRAekpI+ZoB03oA2gIR0CsjkEhq0tzdX2UKGgGR0CXh6vA44p+aAdN6ANoCEdArI8HkPtlZ3V9lChoBkdAkswIrSVnmWgHTegDaAhHQKyWmH2ys0Z1fZQoaAZHQJarKA4GUwBoB03oA2gIR0CsmoAZbY9QdX2UKGgGR0CaeQdbgTAWaAdN6ANoCEdArJqSX0Gu93V9lChoBkdAmb0fQBxPwmgHTegDaAhHQKybV0btJFt1fZQoaAZHQJszp+uvECNoB03oA2gIR0Cspq7aqS5idX2UKGgGR0Cb+0ulGgBcaAdN6ANoCEdArKqjpu/DcnV9lChoBkdAmdVKRyOrAGgHTegDaAhHQKyqtfgrH2h1fZQoaAZHQJksQeZG8VZoB03oA2gIR0Csq35c9nscdX2UKGgGR0CcUcasp5NXaAdN6ANoCEdArLMLP+n623VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfe378d594c8da244d6847f3664db23f68c4b77e72731f6008abe887ce09423e
|
3 |
+
size 1019595
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1297.9250031002412, "std_reward": 396.0804333603261, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-21T21:28:55.251765"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de678b66f2a2eb887c69af414ca3ef408cc3498b4e4abdad42b2698ee44c9e11
|
3 |
+
size 2136
|