yangwang825
commited on
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: facebook/wav2vec2-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-base-voxceleb1
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# wav2vec2-base-voxceleb1
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.0316
|
22 |
+
- Accuracy: 0.8311
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 1
|
44 |
+
- seed: 1016
|
45 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 10.0
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
55 |
+
| 5.7408 | 1.0 | 8648 | 6.0003 | 0.0198 |
|
56 |
+
| 3.0546 | 2.0 | 17296 | 3.9534 | 0.2351 |
|
57 |
+
| 1.3947 | 3.0 | 25944 | 2.4203 | 0.4975 |
|
58 |
+
| 0.5969 | 4.0 | 34592 | 1.5746 | 0.6645 |
|
59 |
+
| 0.2713 | 5.0 | 43240 | 1.3448 | 0.7310 |
|
60 |
+
| 0.1379 | 6.0 | 51888 | 1.2183 | 0.7664 |
|
61 |
+
| 0.0555 | 7.0 | 60536 | 1.1041 | 0.7956 |
|
62 |
+
| 0.0268 | 8.0 | 69184 | 1.0941 | 0.8104 |
|
63 |
+
| 0.0122 | 9.0 | 77832 | 1.0580 | 0.8256 |
|
64 |
+
| 0.0053 | 10.0 | 86480 | 1.0316 | 0.8311 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.46.2
|
70 |
+
- Pytorch 2.0.0+cu117
|
71 |
+
- Datasets 3.1.0
|
72 |
+
- Tokenizers 0.20.3
|