|
import torch |
|
import warnings |
|
import torch.nn as nn |
|
from typing import Optional, Tuple, Union |
|
from transformers.deepspeed import is_deepspeed_zero3_enabled |
|
from transformers.modeling_outputs import BaseModelOutput, SequenceClassifierOutput |
|
from transformers.models.hubert.modeling_hubert import ( |
|
HubertFeatureEncoder, |
|
HubertModel, |
|
HubertEncoderStableLayerNorm, |
|
HubertEncoder, |
|
HubertEncoderLayer, |
|
HubertPositionalConvEmbedding, |
|
HubertAttention, |
|
HubertFeedForward, |
|
PreTrainedModel |
|
) |
|
|
|
try: |
|
from nnAudio import features as nnAudioFeatures |
|
NNAUDIO_INSTALLED=True |
|
except: |
|
print("WARNING: feature_extractor_cqt requires the libray 'nnAudio'") |
|
NNAUDIO_INSTALLED=False |
|
|
|
from .configuration_mert import MERTConfig |
|
|
|
_HIDDEN_STATES_START_POSITION = 1 |
|
|
|
|
|
class MERTFeatureProjection(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.feat_proj_layer_norm = config.feat_proj_layer_norm |
|
self.feature_extractor_cqt = config.feature_extractor_cqt |
|
|
|
if self.feature_extractor_cqt: |
|
|
|
self.feature_dimension = config.conv_dim[-1] + config.feature_extractor_cqt_bins |
|
print(f"feature dimention: {self.feature_dimension}") |
|
else: |
|
self.feature_dimension = config.conv_dim[-1] |
|
if self.feat_proj_layer_norm: |
|
self.layer_norm = nn.LayerNorm(self.feature_dimension, eps=config.layer_norm_eps) |
|
self.projection = nn.Linear(self.feature_dimension, config.hidden_size) |
|
self.dropout = nn.Dropout(config.feat_proj_dropout) |
|
|
|
def forward(self, hidden_states): |
|
|
|
if self.feat_proj_layer_norm: |
|
hidden_states = self.layer_norm(hidden_states) |
|
hidden_states = self.projection(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
class MERTModel(HubertModel): |
|
|
|
config_class = MERTConfig |
|
base_model_prefix = "mert_model" |
|
|
|
def __init__( |
|
self, |
|
config: MERTConfig, |
|
) -> None: |
|
""" |
|
initialize the with the grandparent method HubertPreTrainedModel.__init__() |
|
and modify the HuBERTModel.__init__() |
|
""" |
|
super(HubertModel, self).__init__(config) |
|
|
|
self.config = config |
|
|
|
self.feature_extractor = HubertFeatureEncoder(config) |
|
self.feature_projection = MERTFeatureProjection(config) |
|
|
|
if self.config.feature_extractor_cqt: |
|
assert NNAUDIO_INSTALLED, "ERROR: feature_extractor_cqt requires the libray 'nnAudio', try after `pip install nnAudio` " |
|
print('initializing cqt extractor for MERT') |
|
self.feature_extractor_cqt = nnAudioFeatures.cqt.CQT(sr=self.config.sample_rate, hop_length=self.config.sample_rate//50, fmin=32.7, |
|
fmax=None, n_bins=self.config.feature_extractor_cqt_bins, bins_per_octave=self.config.feature_extractor_cqt_bins//7, |
|
filter_scale=1, norm=1, window='hann', center=True, |
|
pad_mode='constant', trainable=False, |
|
output_format='Magnitude', verbose=True) |
|
|
|
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: |
|
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) |
|
|
|
|
|
if config.do_stable_layer_norm: |
|
assert not config.deepnorm, "must use post-layer_norm with deepnorm" |
|
self.encoder = HubertEncoderStableLayerNorm(config) |
|
else: |
|
if config.deepnorm: |
|
self.encoder = HubertEncoder_extend(config) |
|
else: |
|
self.encoder = HubertEncoder(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward(self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None) -> Union[Tuple, BaseModelOutput]: |
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
extract_features = self.feature_extractor(input_values) |
|
extract_features = extract_features.transpose(1, 2) |
|
|
|
|
|
if self.config.feature_extractor_cqt: |
|
features_cqt = self.feature_extractor_cqt(input_values).transpose(1, 2) |
|
features_cqt = features_cqt[:,:extract_features.shape[1],:] |
|
|
|
|
|
|
|
|
|
extract_features = torch.cat([extract_features,features_cqt], 2) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) |
|
|
|
hidden_states = self.feature_projection(extract_features) |
|
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if not return_dict: |
|
return (hidden_states,) + encoder_outputs[1:] |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class HubertEncoder_extend(HubertEncoder): |
|
|
|
def __init__(self, config): |
|
|
|
|
|
nn.Module.__init__(self) |
|
|
|
|
|
self.config = config |
|
self.pos_conv_embed = HubertPositionalConvEmbedding(config) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout) |
|
|
|
|
|
self.layers = nn.ModuleList([HubertEncoderLayerExtend(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
if config.deepnorm: |
|
import math |
|
init_scale = math.pow(8.0 * config.num_hidden_layers, 0.25) |
|
for name, p in self.named_parameters(): |
|
if ( |
|
"feed_forward.intermediate_dense" in name |
|
or "feed_forward.output_dense" in name |
|
or "out_proj" in name |
|
or "v_proj" in name |
|
): |
|
p.data.div_(init_scale) |
|
|
|
class HubertEncoderLayerExtend(HubertEncoderLayer): |
|
|
|
def __init__(self, config): |
|
nn.Module.__init__(self) |
|
|
|
if config.attention_relax > 0 : |
|
self.attention = HubertAttention_extend( |
|
embed_dim=config.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=False, |
|
attention_relax=config.attention_relax, |
|
) |
|
else: |
|
self.attention = HubertAttention( |
|
embed_dim=config.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
dropout=config.attention_dropout, |
|
is_decoder=False, |
|
) |
|
self.dropout = nn.Dropout(config.hidden_dropout) |
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.feed_forward = HubertFeedForward(config) |
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
if config.deepnorm: |
|
import math |
|
self.residual_alpha = math.pow(2.0 * config.num_hidden_layers, 0.25) |
|
else: |
|
self.residual_alpha = 1.0 |
|
|
|
def residual_connection(self, x, residual): |
|
''' |
|
residual: input before f() |
|
x: output of f(residual) |
|
''' |
|
return residual * self.residual_alpha + x |
|
|
|
def forward(self, hidden_states, attention_mask=None, output_attentions=False): |
|
attn_residual = hidden_states |
|
hidden_states, attn_weights, _ = self.attention( |
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions |
|
) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
hidden_states = self.residual_connection(hidden_states, attn_residual) |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
|
|
|
|
ffn_residual = hidden_states |
|
hidden_states = self.feed_forward(hidden_states) |
|
hidden_states = self.residual_connection(hidden_states, ffn_residual) |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class HubertAttention_extend(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
dropout: float = 0.0, |
|
is_decoder: bool = False, |
|
bias: bool = True, |
|
attention_relax: float = -1.0, |
|
): |
|
super().__init__() |
|
|
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" |
|
f" and `num_heads`: {num_heads})." |
|
) |
|
self.scaling = self.head_dim**-0.5 |
|
self.is_decoder = is_decoder |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
|
|
if attention_relax > 0: |
|
self.attention_relax = attention_relax |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
|
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scaling |
|
|
|
|
|
|
|
|
|
if ( |
|
is_cross_attention |
|
and past_key_value is not None |
|
and past_key_value[0].shape[2] == key_value_states.shape[1] |
|
): |
|
|
|
key_states = past_key_value[0] |
|
value_states = past_key_value[1] |
|
elif is_cross_attention: |
|
|
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) |
|
elif past_key_value is not None: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
else: |
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_states, value_states) |
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim) |
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) |
|
key_states = key_states.view(*proj_shape) |
|
value_states = value_states.view(*proj_shape) |
|
|
|
src_len = key_states.size(1) |
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) |
|
|
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if self.attention_relax > 0: |
|
|
|
|
|
|
|
attn_weights_relax = attn_weights / self.attention_relax |
|
|
|
|
|
attn_max_relax = torch.max(attn_weights_relax, dim=-1, keepdim=False).unsqueeze(2) |
|
attn_weights = (attn_weights_relax - attn_max_relax) * self.attention_relax |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if layer_head_mask is not None: |
|
if layer_head_mask.size() != (self.num_heads,): |
|
raise ValueError( |
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" |
|
f" {layer_head_mask.size()}" |
|
) |
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if output_attentions: |
|
|
|
|
|
|
|
|
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) |
|
else: |
|
attn_weights_reshaped = None |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
|
|
attn_output = torch.bmm(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights_reshaped, past_key_value |
|
|
|
|
|
class MERTPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = MERTConfig |
|
base_model_prefix = "mert" |
|
main_input_name = "input_values" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, nn.Conv1d): |
|
nn.init.kaiming_normal_(module.weight.data) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (HubertEncoder, HubertEncoderStableLayerNorm)): |
|
module.gradient_checkpointing = value |
|
|
|
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): |
|
""" |
|
Computes the output length of the convolutional layers |
|
""" |
|
|
|
def _conv_out_length(input_length, kernel_size, stride): |
|
|
|
|
|
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 |
|
|
|
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): |
|
input_lengths = _conv_out_length(input_lengths, kernel_size, stride) |
|
|
|
return input_lengths |
|
|
|
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): |
|
output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) |
|
batch_size = attention_mask.shape[0] |
|
|
|
attention_mask = torch.zeros( |
|
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device |
|
) |
|
|
|
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 |
|
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() |
|
return attention_mask |
|
|
|
|
|
class MERTForSequenceClassification(MERTPreTrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
if hasattr(config, "add_adapter") and config.add_adapter: |
|
raise ValueError( |
|
"Sequence classification does not support the use of MERT adapters (config.add_adapter=True)" |
|
) |
|
self.mert = MERTModel(config) |
|
num_layers = config.num_hidden_layers + 1 |
|
if config.use_weighted_layer_sum: |
|
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) |
|
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) |
|
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def freeze_feature_extractor(self): |
|
""" |
|
Calling this function will disable the gradient computation for the feature encoder so that its parameters will |
|
not be updated during training. |
|
""" |
|
warnings.warn( |
|
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." |
|
"Please use the equivalent `freeze_feature_encoder` method instead.", |
|
FutureWarning, |
|
) |
|
self.freeze_feature_encoder() |
|
|
|
def freeze_feature_encoder(self): |
|
""" |
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will |
|
not be updated during training. |
|
""" |
|
self.mert.feature_extractor._freeze_parameters() |
|
|
|
def freeze_base_model(self): |
|
""" |
|
Calling this function will disable the gradient computation for the base model so that its parameters will not |
|
be updated during training. Only the classification head will be updated. |
|
""" |
|
for param in self.mert.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward( |
|
self, |
|
input_values: Optional[torch.Tensor], |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
) -> Union[Tuple, SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states |
|
|
|
outputs = self.mert( |
|
input_values, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if self.config.use_weighted_layer_sum: |
|
hidden_states = outputs[_HIDDEN_STATES_START_POSITION] |
|
hidden_states = torch.stack(hidden_states, dim=1) |
|
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) |
|
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) |
|
else: |
|
hidden_states = outputs[0] |
|
|
|
hidden_states = self.projector(hidden_states) |
|
if attention_mask is None: |
|
pooled_output = hidden_states.mean(dim=1) |
|
else: |
|
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) |
|
hidden_states[~padding_mask] = 0.0 |
|
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) |
|
|
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |