yangheng commited on
Commit
e0b3df7
·
verified ·
1 Parent(s): 9422753

Upload 7 files

Browse files
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "MPRNAfold_config": null,
3
+ "_name_or_path": "../output/checkpoint-500-legacy",
4
+ "architectures": [
5
+ "MPRNAForMaskedLM"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_mprna.MPRNAConfig",
10
+ "AutoModel": "modeling_mprna.MPRNAModel",
11
+ "AutoModelForMaskedLM": "modeling_mprna.MPRNAForMaskedLM",
12
+ "AutoModelForSequenceClassification": "modeling_mprna.RNA2StructForSequenceClassification",
13
+ "AutoModelForTokenClassification": "modeling_mprna.RNA2StructForTokenClassification",
14
+ "AutoTokenizer": "tokenization_mprna.MPRNATokenizer"
15
+ },
16
+ "classifier_dropout": null,
17
+ "emb_layer_norm_before": false,
18
+ "hidden_act": "gelu",
19
+ "hidden_dropout_prob": 0,
20
+ "hidden_size": 720,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 2560,
23
+ "is_folding_model": false,
24
+ "layer_norm_eps": 1e-05,
25
+ "mask_token_id": 23,
26
+ "max_position_embeddings": 1026,
27
+ "model_type": "mprna",
28
+ "num_attention_heads": 30,
29
+ "num_hidden_layers": 32,
30
+ "pad_token_id": 1,
31
+ "position_embedding_type": "rotary",
32
+ "token_dropout": true,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.38.0.dev0",
35
+ "use_cache": true,
36
+ "vocab_list": null,
37
+ "vocab_size": 24
38
+ }
configuration_mprna.py ADDED
@@ -0,0 +1,358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ MPRNA model configuration"""
16
+
17
+ from dataclasses import asdict, dataclass
18
+ from typing import Optional
19
+
20
+ from transformers import PretrainedConfig
21
+
22
+ from transformers.utils import logging
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+ # TODO Update this
27
+ MPRNA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
28
+ "yangheng/MPRNA-small": "https://huggingface.co/yangheng/MPRNA-small/resolve/main/config.json",
29
+ # See all MPRNA models at https://huggingface.co/models?filter=MPRNA
30
+ }
31
+
32
+
33
+ class MPRNAConfig(PretrainedConfig):
34
+ r"""
35
+ This is the configuration class to store the configuration of a [`MPRNAModel`]. It is used to instantiate a MPRNA model
36
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
37
+ defaults will yield a similar configuration to that of the MPRNA
38
+ [yangheng/MPRNA-small](https://huggingface.co/yangheng/MPRNA-small) architecture.
39
+
40
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
41
+ documentation from [`PretrainedConfig`] for more information.
42
+
43
+
44
+ Args:
45
+ vocab_size (`int`, *optional*):
46
+ Vocabulary size of the MPRNA model. Defines the number of different tokens that can be represented by the
47
+ `inputs_ids` passed when calling [`MPRNAModel`].
48
+ mask_token_id (`int`, *optional*):
49
+ The index of the mask token in the vocabulary. This must be included in the config because of the
50
+ "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
51
+ pad_token_id (`int`, *optional*):
52
+ The index of the padding token in the vocabulary. This must be included in the config because certain parts
53
+ of the MPRNA code use this instead of the attention mask.
54
+ hidden_size (`int`, *optional*, defaults to 768):
55
+ Dimensionality of the encoder layers and the pooler layer.
56
+ num_hidden_layers (`int`, *optional*, defaults to 12):
57
+ Number of hidden layers in the Transformer encoder.
58
+ num_attention_heads (`int`, *optional*, defaults to 12):
59
+ Number of attention heads for each attention layer in the Transformer encoder.
60
+ intermediate_size (`int`, *optional*, defaults to 3072):
61
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
62
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
63
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
64
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
65
+ The dropout ratio for the attention probabilities.
66
+ max_position_embeddings (`int`, *optional*, defaults to 1026):
67
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
68
+ just in case (e.g., 512 or 1024 or 2048).
69
+ initializer_range (`float`, *optional*, defaults to 0.02):
70
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
71
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
72
+ The epsilon used by the layer normalization layers.
73
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
74
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
75
+ For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
76
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
77
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
78
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
79
+ is_decoder (`bool`, *optional*, defaults to `False`):
80
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
81
+ use_cache (`bool`, *optional*, defaults to `True`):
82
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
83
+ relevant if `config.is_decoder=True`.
84
+ emb_layer_norm_before (`bool`, *optional*):
85
+ Whether to apply layer normalization after embeddings but before the main stem of the network.
86
+ token_dropout (`bool`, defaults to `False`):
87
+ When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
88
+
89
+ Examples:
90
+
91
+ ```python
92
+ # >>> from transformers import MPRNAModel, MPRNAConfig
93
+ #
94
+ # >>> # Initializing a MPRNA yangheng/MPRNA-small style configuration >>> configuration = MPRNAConfig()
95
+ #
96
+ # >>> # Initializing a model from the configuration >>> model = MPRNAModel(configuration)
97
+ #
98
+ # >>> # Accessing the model configuration >>> configuration = model.config
99
+ ```"""
100
+
101
+ model_type = "mprna"
102
+
103
+ def __init__(
104
+ self,
105
+ vocab_size=None,
106
+ mask_token_id=None,
107
+ pad_token_id=None,
108
+ hidden_size=768,
109
+ num_hidden_layers=12,
110
+ num_attention_heads=12,
111
+ intermediate_size=3072,
112
+ hidden_dropout_prob=0.1,
113
+ attention_probs_dropout_prob=0.1,
114
+ max_position_embeddings=1026,
115
+ initializer_range=0.02,
116
+ layer_norm_eps=1e-12,
117
+ position_embedding_type="absolute",
118
+ use_cache=True,
119
+ emb_layer_norm_before=None,
120
+ token_dropout=False,
121
+ is_folding_model=False,
122
+ MPRNAfold_config=None,
123
+ vocab_list=None,
124
+ **kwargs,
125
+ ):
126
+ super().__init__(
127
+ pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs
128
+ )
129
+
130
+ self.vocab_size = vocab_size
131
+ self.hidden_size = hidden_size
132
+ self.num_hidden_layers = num_hidden_layers
133
+ self.num_attention_heads = num_attention_heads
134
+ self.intermediate_size = intermediate_size
135
+ self.hidden_dropout_prob = hidden_dropout_prob
136
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
137
+ self.max_position_embeddings = max_position_embeddings
138
+ self.initializer_range = initializer_range
139
+ self.layer_norm_eps = layer_norm_eps
140
+ self.position_embedding_type = position_embedding_type
141
+ self.use_cache = use_cache
142
+ self.emb_layer_norm_before = emb_layer_norm_before
143
+ self.token_dropout = token_dropout
144
+ self.is_folding_model = is_folding_model
145
+ if is_folding_model:
146
+ if MPRNAfold_config is None:
147
+ logger.info(
148
+ "No MPRNAfold_config supplied for folding model, using default values."
149
+ )
150
+ MPRNAfold_config = MPRNAFoldConfig()
151
+ elif isinstance(MPRNAfold_config, dict):
152
+ MPRNAfold_config = MPRNAFoldConfig(**MPRNAfold_config)
153
+ self.MPRNAfold_config = MPRNAfold_config
154
+ if vocab_list is None:
155
+ logger.warning(
156
+ "No vocab_list supplied for folding model, assuming the MPRNA-2 vocabulary!"
157
+ )
158
+ self.vocab_list = get_default_vocab_list()
159
+ else:
160
+ self.vocab_list = vocab_list
161
+ else:
162
+ self.MPRNAfold_config = None
163
+ self.vocab_list = None
164
+ if self.MPRNAfold_config is not None and getattr(
165
+ self.MPRNAfold_config, "use_MPRNA_attn_map", False
166
+ ):
167
+ raise ValueError(
168
+ "The HuggingFace port of MPRNAFold does not support use_MPRNA_attn_map at this time!"
169
+ )
170
+
171
+ def to_dict(self):
172
+ """
173
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
174
+
175
+ Returns:
176
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
177
+ """
178
+ output = super().to_dict()
179
+ if isinstance(self.MPRNAfold_config, MPRNAFoldConfig):
180
+ output["MPRNAfold_config"] = self.MPRNAfold_config.to_dict()
181
+ return output
182
+
183
+
184
+ @dataclass
185
+ class MPRNAFoldConfig:
186
+ MPRNA_type: str = None
187
+ fp16_MPRNA: bool = True
188
+ use_MPRNA_attn_map: bool = False
189
+ MPRNA_ablate_pairwise: bool = False
190
+ MPRNA_ablate_sequence: bool = False
191
+ MPRNA_input_dropout: float = 0
192
+
193
+ embed_aa: bool = True
194
+ bypass_lm: bool = False
195
+
196
+ lddt_head_hid_dim: int = 128
197
+ trunk: "TrunkConfig" = None
198
+
199
+ def __post_init__(self):
200
+ if self.trunk is None:
201
+ self.trunk = TrunkConfig()
202
+ elif isinstance(self.trunk, dict):
203
+ self.trunk = TrunkConfig(**self.trunk)
204
+
205
+ def to_dict(self):
206
+ """
207
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
208
+
209
+ Returns:
210
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
211
+ """
212
+ output = asdict(self)
213
+ output["trunk"] = self.trunk.to_dict()
214
+ return output
215
+
216
+
217
+ @dataclass
218
+ class TrunkConfig:
219
+ num_blocks: int = 48
220
+ sequence_state_dim: int = 1024
221
+ pairwise_state_dim: int = 128
222
+ sequence_head_width: int = 32
223
+ pairwise_head_width: int = 32
224
+ position_bins: int = 32
225
+ dropout: float = 0
226
+ layer_drop: float = 0
227
+ cpu_grad_checkpoint: bool = False
228
+ max_recycles: int = 4
229
+ chunk_size: Optional[int] = 128
230
+ structure_module: "StructureModuleConfig" = None
231
+
232
+ def __post_init__(self):
233
+ if self.structure_module is None:
234
+ self.structure_module = StructureModuleConfig()
235
+ elif isinstance(self.structure_module, dict):
236
+ self.structure_module = StructureModuleConfig(**self.structure_module)
237
+
238
+ if self.max_recycles <= 0:
239
+ raise ValueError(
240
+ f"`max_recycles` should be positive, got {self.max_recycles}."
241
+ )
242
+ if self.sequence_state_dim % self.sequence_state_dim != 0:
243
+ raise ValueError(
244
+ "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
245
+ f" {self.sequence_state_dim} and {self.sequence_state_dim}."
246
+ )
247
+ if self.pairwise_state_dim % self.pairwise_state_dim != 0:
248
+ raise ValueError(
249
+ "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
250
+ f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
251
+ )
252
+
253
+ sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
254
+ pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width
255
+
256
+ if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
257
+ raise ValueError(
258
+ "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
259
+ f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
260
+ )
261
+ if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
262
+ raise ValueError(
263
+ "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
264
+ f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
265
+ )
266
+ if self.pairwise_state_dim % 2 != 0:
267
+ raise ValueError(
268
+ f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}."
269
+ )
270
+
271
+ if self.dropout >= 0.4:
272
+ raise ValueError(
273
+ f"`dropout` should not be greater than 0.4, got {self.dropout}."
274
+ )
275
+
276
+ def to_dict(self):
277
+ """
278
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
279
+
280
+ Returns:
281
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
282
+ """
283
+ output = asdict(self)
284
+ output["structure_module"] = self.structure_module.to_dict()
285
+ return output
286
+
287
+
288
+ @dataclass
289
+ class StructureModuleConfig:
290
+ """
291
+ Args:
292
+ sequence_dim:
293
+ Single representation channel dimension
294
+ pairwise_dim:
295
+ Pair representation channel dimension
296
+ ipa_dim:
297
+ IPA hidden channel dimension
298
+ resnet_dim:
299
+ Angle resnet (Alg. 23 lines 11-14) hidden channel dimension
300
+ num_heads_ipa:
301
+ Number of IPA heads
302
+ num_qk_points:
303
+ Number of query/key points to generate during IPA
304
+ num_v_points:
305
+ Number of value points to generate during IPA
306
+ dropout_rate:
307
+ Dropout rate used throughout the layer
308
+ num_blocks:
309
+ Number of structure module blocks
310
+ num_transition_layers:
311
+ Number of layers in the single representation transition (Alg. 23 lines 8-9)
312
+ num_resnet_blocks:
313
+ Number of blocks in the angle resnet
314
+ num_angles:
315
+ Number of angles to generate in the angle resnet
316
+ trans_scale_factor:
317
+ Scale of single representation transition hidden dimension
318
+ epsilon:
319
+ Small number used in angle resnet normalization
320
+ inf:
321
+ Large number used for attention masking
322
+ """
323
+
324
+ sequence_dim: int = 384
325
+ pairwise_dim: int = 128
326
+ ipa_dim: int = 16
327
+ resnet_dim: int = 128
328
+ num_heads_ipa: int = 12
329
+ num_qk_points: int = 4
330
+ num_v_points: int = 8
331
+ dropout_rate: float = 0.1
332
+ num_blocks: int = 8
333
+ num_transition_layers: int = 1
334
+ num_resnet_blocks: int = 2
335
+ num_angles: int = 7
336
+ trans_scale_factor: int = 10
337
+ epsilon: float = 1e-8
338
+ inf: float = 1e5
339
+
340
+ def to_dict(self):
341
+ return asdict(self)
342
+
343
+
344
+ def get_default_vocab_list():
345
+ return (
346
+ "<cls>",
347
+ "<pad>",
348
+ "<eos>",
349
+ "<unk>",
350
+ "A",
351
+ "C",
352
+ "G",
353
+ "T",
354
+ "U",
355
+ "N",
356
+ " ",
357
+ "<mask>",
358
+ )
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4efc9da72dd1d13c72c4421427d29135d1d5663ffef048960a24a6905635f307
3
+ size 743619996
modeling_mprna.py ADDED
@@ -0,0 +1,1419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch MPRNA model."""
16
+
17
+ import math
18
+ from typing import List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ import torch.utils.checkpoint
22
+ from torch import nn
23
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
24
+ from transformers import add_start_docstrings, PreTrainedModel
25
+
26
+ from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, \
27
+ BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput
28
+
29
+ from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
30
+
31
+ from transformers.utils import logging, add_code_sample_docstrings, add_start_docstrings_to_model_forward
32
+
33
+ from .configuration_mprna import MPRNAConfig
34
+
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+ _CHECKPOINT_FOR_DOC = "yangheng/MPRNA-small"
39
+ _CONFIG_FOR_DOC = "MPRNAConfig"
40
+
41
+ MPRNA_PRETRAINED_MODEL_ARCHIVE_LIST = [
42
+ "yangheng/MPRNA-small",
43
+ # This is not a complete list of all MPRNA models!
44
+ # See all MPRNA models at https://huggingface.co/models?filter=MPRNA
45
+ ]
46
+
47
+
48
+ def rotate_half(x):
49
+ x1, x2 = x.chunk(2, dim=-1)
50
+ return torch.cat((-x2, x1), dim=-1)
51
+
52
+
53
+ def apply_rotary_pos_emb(x, cos, sin):
54
+ cos = cos[:, :, : x.shape[-2], :]
55
+ sin = sin[:, :, : x.shape[-2], :]
56
+
57
+ return (x * cos) + (rotate_half(x) * sin)
58
+
59
+
60
+ def gelu(x):
61
+ """
62
+ This is the gelu implementation from the original MPRNA repo. Using F.gelu yields subtly wrong results.
63
+ """
64
+ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
65
+
66
+
67
+ def symmetrize(x):
68
+ "Make layer symmetric in final two dimensions, used for contact prediction."
69
+ return x + x.transpose(-1, -2)
70
+
71
+
72
+ def average_product_correct(x):
73
+ "Perform average product correct, used for contact prediction."
74
+ a1 = x.sum(-1, keepdims=True)
75
+ a2 = x.sum(-2, keepdims=True)
76
+ a12 = x.sum((-1, -2), keepdims=True)
77
+
78
+ avg = a1 * a2
79
+ avg.div_(a12) # in-place to reduce memory
80
+ normalized = x - avg
81
+ return normalized
82
+
83
+
84
+ class RotaryEmbedding(torch.nn.Module):
85
+ """
86
+ Rotary position embeddings based on those in
87
+ [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
88
+ matrices which depend on their relative positions.
89
+ """
90
+
91
+ def __init__(self, dim: int):
92
+ super().__init__()
93
+ # Generate and save the inverse frequency buffer (non trainable)
94
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
95
+ inv_freq = inv_freq
96
+ self.register_buffer("inv_freq", inv_freq)
97
+
98
+ self._seq_len_cached = None
99
+ self._cos_cached = None
100
+ self._sin_cached = None
101
+
102
+ def _update_cos_sin_tables(self, x, seq_dimension=2):
103
+ seq_len = x.shape[seq_dimension]
104
+
105
+ # Reset the tables if the sequence length has changed,
106
+ # or if we're on a new device (possibly due to tracing for instance)
107
+ if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
108
+ self._seq_len_cached = seq_len
109
+ t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
110
+ self.inv_freq
111
+ )
112
+ freqs = torch.outer(t, self.inv_freq)
113
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
114
+
115
+ self._cos_cached = emb.cos()[None, None, :, :]
116
+ self._sin_cached = emb.sin()[None, None, :, :]
117
+
118
+ return self._cos_cached, self._sin_cached
119
+
120
+ def forward(
121
+ self, q: torch.Tensor, k: torch.Tensor
122
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
123
+ self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
124
+ k, seq_dimension=-2
125
+ )
126
+
127
+ return (
128
+ apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
129
+ apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
130
+ )
131
+
132
+
133
+ class MPRNAContactPredictionHead(nn.Module):
134
+ """Performs symmetrization, apc, and computes a logistic regression on the output features"""
135
+
136
+ def __init__(
137
+ self,
138
+ in_features: int,
139
+ bias=True,
140
+ eos_idx: int = 2,
141
+ ):
142
+ super().__init__()
143
+ self.in_features = in_features
144
+ self.eos_idx = eos_idx
145
+ self.regression = nn.Linear(in_features, 1, bias)
146
+ self.activation = nn.Sigmoid()
147
+
148
+ def forward(self, tokens, attentions):
149
+ # remove eos token attentions
150
+ eos_mask = tokens.ne(self.eos_idx).to(attentions)
151
+ eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
152
+ attentions = attentions * eos_mask[:, None, None, :, :]
153
+ attentions = attentions[..., :-1, :-1]
154
+ # remove cls token attentions
155
+ attentions = attentions[..., 1:, 1:]
156
+ batch_size, layers, heads, seqlen, _ = attentions.size()
157
+ attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
158
+
159
+ # features: batch x channels x tokens x tokens (symmetric)
160
+ attentions = attentions.to(
161
+ self.regression.weight.device
162
+ ) # attentions always float32, may need to convert to float16
163
+ attentions = average_product_correct(symmetrize(attentions))
164
+ attentions = attentions.permute(0, 2, 3, 1)
165
+ return self.activation(self.regression(attentions).squeeze(3))
166
+
167
+
168
+ class MPRNAEmbeddings(nn.Module):
169
+ """
170
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
171
+ """
172
+
173
+ def __init__(self, config):
174
+ super().__init__()
175
+ self.word_embeddings = nn.Embedding(
176
+ config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
177
+ )
178
+
179
+ if config.emb_layer_norm_before:
180
+ self.layer_norm = nn.LayerNorm(
181
+ config.hidden_size, eps=config.layer_norm_eps
182
+ )
183
+ else:
184
+ self.layer_norm = None
185
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
186
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
187
+ self.position_embedding_type = getattr(
188
+ config, "position_embedding_type", "absolute"
189
+ )
190
+ self.register_buffer(
191
+ "position_ids",
192
+ torch.arange(config.max_position_embeddings).expand((1, -1)),
193
+ persistent=False,
194
+ )
195
+
196
+ self.padding_idx = config.pad_token_id
197
+ self.position_embeddings = nn.Embedding(
198
+ config.max_position_embeddings,
199
+ config.hidden_size,
200
+ padding_idx=self.padding_idx,
201
+ )
202
+ self.token_dropout = config.token_dropout
203
+ self.mask_token_id = config.mask_token_id
204
+
205
+ def forward(
206
+ self,
207
+ input_ids=None,
208
+ attention_mask=None,
209
+ position_ids=None,
210
+ inputs_embeds=None,
211
+ past_key_values_length=0,
212
+ ):
213
+ if position_ids is None:
214
+ if input_ids is not None:
215
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
216
+ position_ids = create_position_ids_from_input_ids(
217
+ input_ids, self.padding_idx, past_key_values_length
218
+ )
219
+ else:
220
+ position_ids = self.create_position_ids_from_inputs_embeds(
221
+ inputs_embeds
222
+ )
223
+
224
+ if inputs_embeds is None:
225
+ inputs_embeds = self.word_embeddings(input_ids)
226
+
227
+ # Note that if we want to support MPRNA-1 (not 1b!) in future then we need to support an
228
+ # embedding_scale factor here.
229
+ embeddings = inputs_embeds
230
+
231
+ # Matt: MPRNA has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
232
+ # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
233
+ # masked tokens are treated as if they were selected for input dropout and zeroed out.
234
+ # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
235
+ # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
236
+ # This is analogous to the way that dropout layers scale down outputs during evaluation when not
237
+ # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
238
+ if self.token_dropout:
239
+ embeddings = embeddings.masked_fill(
240
+ (input_ids == self.mask_token_id).unsqueeze(-1), 0.0
241
+ )
242
+ mask_ratio_train = (
243
+ 0.15 * 0.8
244
+ ) # Hardcoded as the ratio used in all MPRNA model training runs
245
+ src_lengths = attention_mask.sum(-1)
246
+ mask_ratio_observed = (input_ids == self.mask_token_id).sum(
247
+ -1
248
+ ).float() / src_lengths
249
+ embeddings = (
250
+ embeddings
251
+ * (1 - mask_ratio_train)
252
+ / (1 - mask_ratio_observed)[:, None, None]
253
+ ).to(embeddings.dtype)
254
+
255
+ if self.position_embedding_type == "absolute":
256
+ position_embeddings = self.position_embeddings(position_ids)
257
+ embeddings = embeddings + position_embeddings
258
+
259
+ if self.layer_norm is not None:
260
+ embeddings = self.layer_norm(embeddings)
261
+ if attention_mask is not None:
262
+ embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(
263
+ embeddings.dtype
264
+ )
265
+ # Matt: I think this line was copied incorrectly from BERT, disabling it for now.
266
+ # embeddings = self.dropout(embeddings)
267
+ return embeddings
268
+
269
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
270
+ """
271
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
272
+
273
+ Args:
274
+ inputs_embeds: torch.Tensor
275
+
276
+ Returns: torch.Tensor
277
+ """
278
+ input_shape = inputs_embeds.size()[:-1]
279
+ sequence_length = input_shape[1]
280
+
281
+ position_ids = torch.arange(
282
+ self.padding_idx + 1,
283
+ sequence_length + self.padding_idx + 1,
284
+ dtype=torch.long,
285
+ device=inputs_embeds.device,
286
+ )
287
+ return position_ids.unsqueeze(0).expand(input_shape)
288
+
289
+
290
+ class MPRNASelfAttention(nn.Module):
291
+ def __init__(self, config, position_embedding_type=None):
292
+ super().__init__()
293
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
294
+ config, "embedding_size"
295
+ ):
296
+ raise ValueError(
297
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
298
+ f"heads ({config.num_attention_heads})"
299
+ )
300
+
301
+ self.num_attention_heads = config.num_attention_heads
302
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
303
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
304
+
305
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
306
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
307
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
308
+
309
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
310
+ self.position_embedding_type = position_embedding_type or getattr(
311
+ config, "position_embedding_type", "absolute"
312
+ )
313
+ self.rotary_embeddings = None
314
+ if (
315
+ self.position_embedding_type == "relative_key"
316
+ or self.position_embedding_type == "relative_key_query"
317
+ ):
318
+ self.max_position_embeddings = config.max_position_embeddings
319
+ self.distance_embedding = nn.Embedding(
320
+ 2 * config.max_position_embeddings - 1, self.attention_head_size
321
+ )
322
+ elif self.position_embedding_type == "rotary":
323
+ self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
324
+
325
+ self.is_decoder = config.is_decoder
326
+
327
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
328
+ new_x_shape = x.size()[:-1] + (
329
+ self.num_attention_heads,
330
+ self.attention_head_size,
331
+ )
332
+ x = x.view(new_x_shape)
333
+ return x.permute(0, 2, 1, 3)
334
+
335
+ def forward(
336
+ self,
337
+ hidden_states: torch.Tensor,
338
+ attention_mask: Optional[torch.FloatTensor] = None,
339
+ head_mask: Optional[torch.FloatTensor] = None,
340
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
341
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
342
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
343
+ output_attentions: Optional[bool] = False,
344
+ ) -> Tuple[torch.Tensor]:
345
+ mixed_query_layer = self.query(hidden_states)
346
+
347
+ # If this is instantiated as a cross-attention module, the keys
348
+ # and values come from an encoder; the attention mask needs to be
349
+ # such that the encoder's padding tokens are not attended to.
350
+ is_cross_attention = encoder_hidden_states is not None
351
+
352
+ if is_cross_attention and past_key_value is not None:
353
+ # reuse k,v, cross_attentions
354
+ key_layer = past_key_value[0]
355
+ value_layer = past_key_value[1]
356
+ attention_mask = encoder_attention_mask
357
+ elif is_cross_attention:
358
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
359
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
360
+ attention_mask = encoder_attention_mask
361
+ elif past_key_value is not None:
362
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
363
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
364
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
365
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
366
+ else:
367
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
368
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
369
+
370
+ query_layer = self.transpose_for_scores(mixed_query_layer)
371
+
372
+ # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
373
+ # MPRNA scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
374
+ # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
375
+ # MPRNA code and fix rotary embeddings.
376
+ query_layer = query_layer * self.attention_head_size**-0.5
377
+
378
+ if self.is_decoder:
379
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
380
+ # Further calls to cross_attention layer can then reuse all cross-attention
381
+ # key/value_states (first "if" case)
382
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
383
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
384
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
385
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
386
+ past_key_value = (key_layer, value_layer)
387
+
388
+ if self.position_embedding_type == "rotary":
389
+ query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
390
+
391
+ # Take the dot product between "query" and "key" to get the raw attention scores.
392
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
393
+
394
+ if (
395
+ self.position_embedding_type == "relative_key"
396
+ or self.position_embedding_type == "relative_key_query"
397
+ ):
398
+ seq_length = hidden_states.size()[1]
399
+ position_ids_l = torch.arange(
400
+ seq_length, dtype=torch.long, device=hidden_states.device
401
+ ).view(-1, 1)
402
+ position_ids_r = torch.arange(
403
+ seq_length, dtype=torch.long, device=hidden_states.device
404
+ ).view(1, -1)
405
+ distance = position_ids_l - position_ids_r
406
+ positional_embedding = self.distance_embedding(
407
+ distance + self.max_position_embeddings - 1
408
+ )
409
+ positional_embedding = positional_embedding.to(
410
+ dtype=query_layer.dtype
411
+ ) # fp16 compatibility
412
+
413
+ if self.position_embedding_type == "relative_key":
414
+ relative_position_scores = torch.einsum(
415
+ "bhld,lrd->bhlr", query_layer, positional_embedding
416
+ )
417
+ attention_scores = attention_scores + relative_position_scores
418
+ elif self.position_embedding_type == "relative_key_query":
419
+ relative_position_scores_query = torch.einsum(
420
+ "bhld,lrd->bhlr", query_layer, positional_embedding
421
+ )
422
+ relative_position_scores_key = torch.einsum(
423
+ "bhrd,lrd->bhlr", key_layer, positional_embedding
424
+ )
425
+ attention_scores = (
426
+ attention_scores
427
+ + relative_position_scores_query
428
+ + relative_position_scores_key
429
+ )
430
+
431
+ if attention_mask is not None:
432
+ # Apply the attention mask is (precomputed for all layers in MPRNAModel forward() function)
433
+ attention_scores = attention_scores + attention_mask
434
+
435
+ # Normalize the attention scores to probabilities.
436
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
437
+
438
+ # This is actually dropping out entire tokens to attend to, which might
439
+ # seem a bit unusual, but is taken from the original Transformer paper.
440
+ attention_probs = self.dropout(attention_probs)
441
+
442
+ # Mask heads if we want to
443
+ if head_mask is not None:
444
+ attention_probs = attention_probs * head_mask
445
+
446
+ context_layer = torch.matmul(attention_probs, value_layer)
447
+
448
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
449
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
450
+ context_layer = context_layer.view(new_context_layer_shape)
451
+
452
+ outputs = (
453
+ (context_layer, attention_probs) if output_attentions else (context_layer,)
454
+ )
455
+
456
+ if self.is_decoder:
457
+ outputs = outputs + (past_key_value,)
458
+ return outputs
459
+
460
+
461
+ class MPRNASelfOutput(nn.Module):
462
+ def __init__(self, config):
463
+ super().__init__()
464
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
465
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
466
+
467
+ def forward(self, hidden_states, input_tensor):
468
+ hidden_states = self.dense(hidden_states)
469
+ hidden_states = self.dropout(hidden_states)
470
+ hidden_states = hidden_states + input_tensor
471
+ return hidden_states
472
+
473
+
474
+ class MPRNAAttention(nn.Module):
475
+ def __init__(self, config):
476
+ super().__init__()
477
+ self.self = MPRNASelfAttention(config)
478
+ self.output = MPRNASelfOutput(config)
479
+ self.pruned_heads = set()
480
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
481
+
482
+ def prune_heads(self, heads):
483
+ if len(heads) == 0:
484
+ return
485
+ heads, index = find_pruneable_heads_and_indices(
486
+ heads,
487
+ self.self.num_attention_heads,
488
+ self.self.attention_head_size,
489
+ self.pruned_heads,
490
+ )
491
+
492
+ # Prune linear layers
493
+ self.self.query = prune_linear_layer(self.self.query, index)
494
+ self.self.key = prune_linear_layer(self.self.key, index)
495
+ self.self.value = prune_linear_layer(self.self.value, index)
496
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
497
+
498
+ # Update hyper params and store pruned heads
499
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
500
+ self.self.all_head_size = (
501
+ self.self.attention_head_size * self.self.num_attention_heads
502
+ )
503
+ self.pruned_heads = self.pruned_heads.union(heads)
504
+
505
+ def forward(
506
+ self,
507
+ hidden_states,
508
+ attention_mask=None,
509
+ head_mask=None,
510
+ encoder_hidden_states=None,
511
+ encoder_attention_mask=None,
512
+ past_key_value=None,
513
+ output_attentions=False,
514
+ ):
515
+ hidden_states_ln = self.LayerNorm(hidden_states)
516
+ self_outputs = self.self(
517
+ hidden_states_ln,
518
+ attention_mask,
519
+ head_mask,
520
+ encoder_hidden_states,
521
+ encoder_attention_mask,
522
+ past_key_value,
523
+ output_attentions,
524
+ )
525
+ attention_output = self.output(self_outputs[0], hidden_states)
526
+ outputs = (attention_output,) + self_outputs[
527
+ 1:
528
+ ] # add attentions if we output them
529
+ return outputs
530
+
531
+
532
+ class MPRNAIntermediate(nn.Module):
533
+ def __init__(self, config):
534
+ super().__init__()
535
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
536
+
537
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
538
+ hidden_states = self.dense(hidden_states)
539
+ hidden_states = gelu(hidden_states)
540
+ return hidden_states
541
+
542
+
543
+ class MPRNAOutput(nn.Module):
544
+ def __init__(self, config):
545
+ super().__init__()
546
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
547
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
548
+
549
+ def forward(self, hidden_states, input_tensor):
550
+ hidden_states = self.dense(hidden_states)
551
+ hidden_states = self.dropout(hidden_states)
552
+ hidden_states = hidden_states + input_tensor
553
+ return hidden_states
554
+
555
+
556
+ class MPRNALayer(nn.Module):
557
+ def __init__(self, config):
558
+ super().__init__()
559
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
560
+ self.seq_len_dim = 1
561
+ self.attention = MPRNAAttention(config)
562
+ self.is_decoder = config.is_decoder
563
+ self.add_cross_attention = config.add_cross_attention
564
+ if self.add_cross_attention:
565
+ if not self.is_decoder:
566
+ raise RuntimeError(
567
+ f"{self} should be used as a decoder model if cross attention is added"
568
+ )
569
+ self.crossattention = MPRNAAttention(config)
570
+ self.intermediate = MPRNAIntermediate(config)
571
+ self.output = MPRNAOutput(config)
572
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
573
+
574
+ def forward(
575
+ self,
576
+ hidden_states,
577
+ attention_mask=None,
578
+ head_mask=None,
579
+ encoder_hidden_states=None,
580
+ encoder_attention_mask=None,
581
+ past_key_value=None,
582
+ output_attentions=False,
583
+ ):
584
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
585
+ self_attn_past_key_value = (
586
+ past_key_value[:2] if past_key_value is not None else None
587
+ )
588
+ self_attention_outputs = self.attention(
589
+ hidden_states,
590
+ attention_mask,
591
+ head_mask,
592
+ output_attentions=output_attentions,
593
+ past_key_value=self_attn_past_key_value,
594
+ )
595
+ attention_output = self_attention_outputs[0]
596
+
597
+ # if decoder, the last output is tuple of self-attn cache
598
+ if self.is_decoder:
599
+ outputs = self_attention_outputs[1:-1]
600
+ present_key_value = self_attention_outputs[-1]
601
+ else:
602
+ outputs = self_attention_outputs[
603
+ 1:
604
+ ] # add self attentions if we output attention weights
605
+
606
+ cross_attn_present_key_value = None
607
+ if self.is_decoder and encoder_hidden_states is not None:
608
+ if not hasattr(self, "crossattention"):
609
+ raise AttributeError(
610
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
611
+ " with cross-attention layers by setting `config.add_cross_attention=True`"
612
+ )
613
+
614
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
615
+ cross_attn_past_key_value = (
616
+ past_key_value[-2:] if past_key_value is not None else None
617
+ )
618
+ cross_attention_outputs = self.crossattention(
619
+ attention_output,
620
+ attention_mask,
621
+ head_mask,
622
+ encoder_hidden_states,
623
+ encoder_attention_mask,
624
+ cross_attn_past_key_value,
625
+ output_attentions,
626
+ )
627
+ attention_output = cross_attention_outputs[0]
628
+ outputs = (
629
+ outputs + cross_attention_outputs[1:-1]
630
+ ) # add cross attentions if we output attention weights
631
+
632
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
633
+ cross_attn_present_key_value = cross_attention_outputs[-1]
634
+ present_key_value = present_key_value + cross_attn_present_key_value
635
+
636
+ layer_output = self.feed_forward_chunk(attention_output)
637
+
638
+ outputs = (layer_output,) + outputs
639
+
640
+ # if decoder, return the attn key/values as the last output
641
+ if self.is_decoder:
642
+ outputs = outputs + (present_key_value,)
643
+ return outputs
644
+
645
+ def feed_forward_chunk(self, attention_output):
646
+ attention_output_ln = self.LayerNorm(attention_output)
647
+ intermediate_output = self.intermediate(attention_output_ln)
648
+ layer_output = self.output(intermediate_output, attention_output)
649
+ return layer_output
650
+
651
+
652
+ class MPRNAEncoder(nn.Module):
653
+ def __init__(self, config):
654
+ super().__init__()
655
+ self.config = config
656
+ self.layer = nn.ModuleList(
657
+ [MPRNALayer(config) for _ in range(config.num_hidden_layers)]
658
+ )
659
+ self.emb_layer_norm_after = nn.LayerNorm(
660
+ config.hidden_size, eps=config.layer_norm_eps
661
+ )
662
+ self.gradient_checkpointing = False
663
+
664
+ def forward(
665
+ self,
666
+ hidden_states,
667
+ attention_mask=None,
668
+ head_mask=None,
669
+ encoder_hidden_states=None,
670
+ encoder_attention_mask=None,
671
+ past_key_values=None,
672
+ use_cache=None,
673
+ output_attentions=False,
674
+ output_hidden_states=False,
675
+ return_dict=True,
676
+ ):
677
+ if self.gradient_checkpointing and self.training:
678
+ if use_cache:
679
+ logger.warning_once(
680
+ "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
681
+ "`use_cache=False`..."
682
+ )
683
+ use_cache = False
684
+ all_hidden_states = () if output_hidden_states else None
685
+ all_self_attentions = () if output_attentions else None
686
+ all_cross_attentions = (
687
+ () if output_attentions and self.config.add_cross_attention else None
688
+ )
689
+
690
+ next_decoder_cache = () if use_cache else None
691
+ for i, layer_module in enumerate(self.layer):
692
+ if output_hidden_states:
693
+ all_hidden_states = all_hidden_states + (hidden_states,)
694
+
695
+ layer_head_mask = head_mask[i] if head_mask is not None else None
696
+ past_key_value = past_key_values[i] if past_key_values is not None else None
697
+
698
+ if self.gradient_checkpointing and self.training:
699
+ layer_outputs = self._gradient_checkpointing_func(
700
+ layer_module.__call__,
701
+ hidden_states,
702
+ attention_mask,
703
+ layer_head_mask,
704
+ encoder_hidden_states,
705
+ encoder_attention_mask,
706
+ past_key_value,
707
+ output_attentions,
708
+ )
709
+ else:
710
+ layer_outputs = layer_module(
711
+ hidden_states,
712
+ attention_mask,
713
+ layer_head_mask,
714
+ encoder_hidden_states,
715
+ encoder_attention_mask,
716
+ past_key_value,
717
+ output_attentions,
718
+ )
719
+
720
+ hidden_states = layer_outputs[0]
721
+ if use_cache:
722
+ next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
723
+ if output_attentions:
724
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
725
+ if self.config.add_cross_attention:
726
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
727
+
728
+ if self.emb_layer_norm_after:
729
+ hidden_states = self.emb_layer_norm_after(hidden_states)
730
+
731
+ if output_hidden_states:
732
+ all_hidden_states = all_hidden_states + (hidden_states,)
733
+
734
+ if not return_dict:
735
+ return tuple(
736
+ v
737
+ for v in [
738
+ hidden_states,
739
+ next_decoder_cache,
740
+ all_hidden_states,
741
+ all_self_attentions,
742
+ all_cross_attentions,
743
+ ]
744
+ if v is not None
745
+ )
746
+ return BaseModelOutputWithPastAndCrossAttentions(
747
+ last_hidden_state=hidden_states,
748
+ past_key_values=next_decoder_cache,
749
+ hidden_states=all_hidden_states,
750
+ attentions=all_self_attentions,
751
+ cross_attentions=all_cross_attentions,
752
+ )
753
+
754
+
755
+ # Copied from transformers.models.bert.modeling_bert.BertPooler
756
+ class MPRNAPooler(nn.Module):
757
+ def __init__(self, config):
758
+ super().__init__()
759
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
760
+ self.activation = nn.Tanh()
761
+
762
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
763
+ # We "pool" the model by simply taking the hidden state corresponding
764
+ # to the first token.
765
+ first_token_tensor = hidden_states[:, 0]
766
+ pooled_output = self.dense(first_token_tensor)
767
+ pooled_output = self.activation(pooled_output)
768
+ return pooled_output
769
+
770
+
771
+ class MPRNAPreTrainedModel(PreTrainedModel):
772
+ """
773
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
774
+ models.
775
+ """
776
+
777
+ config_class = MPRNAConfig
778
+ base_model_prefix = "MPRNA"
779
+ supports_gradient_checkpointing = True
780
+ _no_split_modules = [
781
+ "MPRNALayer",
782
+ "MPRNAFoldTriangularSelfAttentionBlock",
783
+ "MPRNAEmbeddings",
784
+ ]
785
+
786
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
787
+ def _init_weights(self, module):
788
+ """Initialize the weights"""
789
+ if isinstance(module, nn.Linear):
790
+ # Slightly different from the TF version which uses truncated_normal for initialization
791
+ # cf https://github.com/pytorch/pytorch/pull/5617
792
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
793
+ if module.bias is not None:
794
+ module.bias.data.zero_()
795
+ elif isinstance(module, nn.Embedding):
796
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
797
+ if module.padding_idx is not None:
798
+ module.weight.data[module.padding_idx].zero_()
799
+ elif isinstance(module, nn.LayerNorm):
800
+ module.bias.data.zero_()
801
+ module.weight.data.fill_(1.0)
802
+
803
+
804
+ MPRNA_START_DOCSTRING = r"""
805
+
806
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
807
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
808
+ etc.)
809
+
810
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
811
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
812
+ and behavior.
813
+
814
+ Parameters:
815
+ config ([`MPRNAConfig`]): Model configuration class with all the parameters of the
816
+ model. Initializing with a config file does not load the weights associated with the model, only the
817
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
818
+ """
819
+
820
+ MPRNA_INPUTS_DOCSTRING = r"""
821
+ Args:
822
+ input_ids (`torch.LongTensor` of shape `({0})`):
823
+ Indices of input sequence tokens in the vocabulary.
824
+
825
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
826
+ [`PreTrainedTokenizer.__call__`] for details.
827
+
828
+ [What are input IDs?](../glossary#input-ids)
829
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
830
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
831
+
832
+ - 1 for tokens that are **not masked**,
833
+ - 0 for tokens that are **masked**.
834
+
835
+ [What are attention masks?](../glossary#attention-mask)
836
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
837
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
838
+ config.max_position_embeddings - 1]`.
839
+
840
+ [What are position IDs?](../glossary#position-ids)
841
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
842
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
843
+
844
+ - 1 indicates the head is **not masked**,
845
+ - 0 indicates the head is **masked**.
846
+
847
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
848
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
849
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
850
+ model's internal embedding lookup matrix.
851
+ output_attentions (`bool`, *optional*):
852
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
853
+ tensors for more detail.
854
+ output_hidden_states (`bool`, *optional*):
855
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
856
+ more detail.
857
+ return_dict (`bool`, *optional*):
858
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
859
+ """
860
+
861
+
862
+ @add_start_docstrings(
863
+ "The bare MPRNA Model transformer outputting raw hidden-states without any specific head on top.",
864
+ MPRNA_START_DOCSTRING,
865
+ )
866
+ class MPRNAModel(MPRNAPreTrainedModel):
867
+ """
868
+
869
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
870
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
871
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
872
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
873
+
874
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
875
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
876
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
877
+ """
878
+
879
+ def __init__(self, config, add_pooling_layer=True):
880
+ super().__init__(config)
881
+ self.config = config
882
+
883
+ self.embeddings = MPRNAEmbeddings(config)
884
+ self.encoder = MPRNAEncoder(config)
885
+
886
+ self.pooler = MPRNAPooler(config) if add_pooling_layer else None
887
+
888
+ self.contact_head = MPRNAContactPredictionHead(
889
+ in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
890
+ )
891
+
892
+ # Initialize weights and apply final processing
893
+ self.post_init()
894
+
895
+ def get_input_embeddings(self):
896
+ return self.embeddings.word_embeddings
897
+
898
+ def set_input_embeddings(self, value):
899
+ self.embeddings.word_embeddings = value
900
+
901
+ def _prune_heads(self, heads_to_prune):
902
+ """
903
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
904
+ class PreTrainedModel
905
+ """
906
+ for layer, heads in heads_to_prune.items():
907
+ self.encoder.layer[layer].attention.prune_heads(heads)
908
+
909
+ @add_start_docstrings_to_model_forward(
910
+ MPRNA_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")
911
+ )
912
+ @add_code_sample_docstrings(
913
+ checkpoint=_CHECKPOINT_FOR_DOC,
914
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
915
+ config_class=_CONFIG_FOR_DOC,
916
+ )
917
+ def forward(
918
+ self,
919
+ input_ids: Optional[torch.Tensor] = None,
920
+ attention_mask: Optional[torch.Tensor] = None,
921
+ position_ids: Optional[torch.Tensor] = None,
922
+ head_mask: Optional[torch.Tensor] = None,
923
+ inputs_embeds: Optional[torch.Tensor] = None,
924
+ encoder_hidden_states: Optional[torch.Tensor] = None,
925
+ encoder_attention_mask: Optional[torch.Tensor] = None,
926
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
927
+ use_cache: Optional[bool] = None,
928
+ output_attentions: Optional[bool] = None,
929
+ output_hidden_states: Optional[bool] = None,
930
+ return_dict: Optional[bool] = None,
931
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
932
+ r"""
933
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
934
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
935
+ the model is configured as a decoder.
936
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
937
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
938
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
939
+
940
+ - 1 for tokens that are **not masked**,
941
+ - 0 for tokens that are **masked**.
942
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
943
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
944
+
945
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
946
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
947
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
948
+ use_cache (`bool`, *optional*):
949
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
950
+ `past_key_values`).
951
+ """
952
+ output_attentions = (
953
+ output_attentions
954
+ if output_attentions is not None
955
+ else self.config.output_attentions
956
+ )
957
+ output_hidden_states = (
958
+ output_hidden_states
959
+ if output_hidden_states is not None
960
+ else self.config.output_hidden_states
961
+ )
962
+ return_dict = (
963
+ return_dict if return_dict is not None else self.config.use_return_dict
964
+ )
965
+
966
+ if self.config.is_decoder:
967
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
968
+ else:
969
+ use_cache = False
970
+
971
+ if input_ids is not None and inputs_embeds is not None:
972
+ raise ValueError(
973
+ "You cannot specify both input_ids and inputs_embeds at the same time"
974
+ )
975
+ elif input_ids is not None:
976
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
977
+ input_shape = input_ids.size()
978
+ elif inputs_embeds is not None:
979
+ input_shape = inputs_embeds.size()[:-1]
980
+ else:
981
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
982
+
983
+ batch_size, seq_length = input_shape
984
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
985
+
986
+ # past_key_values_length
987
+ past_key_values_length = (
988
+ past_key_values[0][0].shape[2] if past_key_values is not None else 0
989
+ )
990
+
991
+ if attention_mask is None:
992
+ attention_mask = torch.ones(
993
+ ((batch_size, seq_length + past_key_values_length)), device=device
994
+ )
995
+
996
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
997
+ # ourselves in which case we just need to make it broadcastable to all heads.
998
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
999
+ attention_mask, input_shape
1000
+ )
1001
+
1002
+ # If a 2D or 3D attention mask is provided for the cross-attention
1003
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
1004
+ if self.config.is_decoder and encoder_hidden_states is not None:
1005
+ (
1006
+ encoder_batch_size,
1007
+ encoder_sequence_length,
1008
+ _,
1009
+ ) = encoder_hidden_states.size()
1010
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
1011
+ if encoder_attention_mask is None:
1012
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
1013
+ encoder_extended_attention_mask = self.invert_attention_mask(
1014
+ encoder_attention_mask
1015
+ )
1016
+ else:
1017
+ encoder_extended_attention_mask = None
1018
+
1019
+ # Prepare head mask if needed
1020
+ # 1.0 in head_mask indicate we keep the head
1021
+ # attention_probs has shape bsz x n_heads x N x N
1022
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
1023
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
1024
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
1025
+
1026
+ embedding_output = self.embeddings(
1027
+ input_ids=input_ids,
1028
+ position_ids=position_ids,
1029
+ attention_mask=attention_mask,
1030
+ inputs_embeds=inputs_embeds,
1031
+ past_key_values_length=past_key_values_length,
1032
+ )
1033
+ encoder_outputs = self.encoder(
1034
+ embedding_output,
1035
+ attention_mask=extended_attention_mask,
1036
+ head_mask=head_mask,
1037
+ encoder_hidden_states=encoder_hidden_states,
1038
+ encoder_attention_mask=encoder_extended_attention_mask,
1039
+ past_key_values=past_key_values,
1040
+ use_cache=use_cache,
1041
+ output_attentions=output_attentions,
1042
+ output_hidden_states=output_hidden_states,
1043
+ return_dict=return_dict,
1044
+ )
1045
+ sequence_output = encoder_outputs[0]
1046
+ pooled_output = (
1047
+ self.pooler(sequence_output) if self.pooler is not None else None
1048
+ )
1049
+
1050
+ if not return_dict:
1051
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
1052
+
1053
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1054
+ last_hidden_state=sequence_output,
1055
+ pooler_output=pooled_output,
1056
+ past_key_values=encoder_outputs.past_key_values,
1057
+ hidden_states=encoder_outputs.hidden_states,
1058
+ attentions=encoder_outputs.attentions,
1059
+ cross_attentions=encoder_outputs.cross_attentions,
1060
+ )
1061
+
1062
+ def predict_contacts(self, tokens, attention_mask):
1063
+ attns = self(
1064
+ tokens,
1065
+ attention_mask=attention_mask,
1066
+ return_dict=True,
1067
+ output_attentions=True,
1068
+ ).attentions
1069
+ attns = torch.stack(attns, dim=1) # Matches the original model layout
1070
+ # In the original model, attentions for padding tokens are completely zeroed out.
1071
+ # This makes no difference most of the time because the other tokens won't attend to them,
1072
+ # but it does for the contact prediction task, which takes attentions as input,
1073
+ # so we have to mimic that here.
1074
+ attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
1075
+ attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
1076
+ return self.contact_head(tokens, attns)
1077
+
1078
+
1079
+ @add_start_docstrings(
1080
+ """MPRNA Model with a `language modeling` head on top.""", MPRNA_START_DOCSTRING
1081
+ )
1082
+ class MPRNAForMaskedLM(MPRNAPreTrainedModel):
1083
+ _tied_weights_keys = ["lm_head.decoder.weight"]
1084
+
1085
+ def __init__(self, config):
1086
+ super().__init__(config)
1087
+
1088
+ if config.is_decoder:
1089
+ logger.warning(
1090
+ "If you want to use `MPRNAForMaskedLM` make sure `config.is_decoder=False` for "
1091
+ "bi-directional self-attention."
1092
+ )
1093
+
1094
+ self.MPRNA = MPRNAModel(config, add_pooling_layer=False)
1095
+ self.lm_head = MPRNALMHead(config)
1096
+
1097
+ self.init_weights()
1098
+
1099
+ def get_output_embeddings(self):
1100
+ return self.lm_head.decoder
1101
+
1102
+ def set_output_embeddings(self, new_embeddings):
1103
+ self.lm_head.decoder = new_embeddings
1104
+
1105
+ @add_start_docstrings_to_model_forward(
1106
+ MPRNA_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1107
+ )
1108
+ @add_code_sample_docstrings(
1109
+ checkpoint=_CHECKPOINT_FOR_DOC,
1110
+ output_type=MaskedLMOutput,
1111
+ config_class=_CONFIG_FOR_DOC,
1112
+ mask="<mask>",
1113
+ )
1114
+ def forward(
1115
+ self,
1116
+ input_ids: Optional[torch.LongTensor] = None,
1117
+ attention_mask: Optional[torch.Tensor] = None,
1118
+ position_ids: Optional[torch.LongTensor] = None,
1119
+ head_mask: Optional[torch.Tensor] = None,
1120
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1121
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
1122
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1123
+ labels: Optional[torch.LongTensor] = None,
1124
+ output_attentions: Optional[bool] = None,
1125
+ output_hidden_states: Optional[bool] = None,
1126
+ return_dict: Optional[bool] = None,
1127
+ ) -> Union[Tuple, MaskedLMOutput]:
1128
+ r"""
1129
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1130
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1131
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1132
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1133
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
1134
+ Used to hide legacy arguments that have been deprecated.
1135
+ """
1136
+ return_dict = (
1137
+ return_dict if return_dict is not None else self.config.use_return_dict
1138
+ )
1139
+
1140
+ outputs = self.MPRNA(
1141
+ input_ids,
1142
+ attention_mask=attention_mask,
1143
+ position_ids=position_ids,
1144
+ head_mask=head_mask,
1145
+ inputs_embeds=inputs_embeds,
1146
+ encoder_hidden_states=encoder_hidden_states,
1147
+ encoder_attention_mask=encoder_attention_mask,
1148
+ output_attentions=output_attentions,
1149
+ output_hidden_states=output_hidden_states,
1150
+ return_dict=return_dict,
1151
+ )
1152
+ sequence_output = outputs[0]
1153
+ prediction_scores = self.lm_head(sequence_output)
1154
+
1155
+ masked_lm_loss = None
1156
+ if labels is not None:
1157
+ loss_fct = CrossEntropyLoss()
1158
+
1159
+ labels = labels.to(prediction_scores.device)
1160
+ masked_lm_loss = loss_fct(
1161
+ prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
1162
+ )
1163
+
1164
+ if not return_dict:
1165
+ output = (prediction_scores,) + outputs[2:]
1166
+ return (
1167
+ ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1168
+ )
1169
+
1170
+ return MaskedLMOutput(
1171
+ loss=masked_lm_loss,
1172
+ logits=prediction_scores,
1173
+ hidden_states=outputs.hidden_states,
1174
+ attentions=outputs.attentions,
1175
+ )
1176
+
1177
+ def predict_contacts(self, tokens, attention_mask):
1178
+ return self.MPRNA.predict_contacts(tokens, attention_mask=attention_mask)
1179
+
1180
+
1181
+ class MPRNALMHead(nn.Module):
1182
+ """MPRNA Head for masked language modeling."""
1183
+
1184
+ def __init__(self, config):
1185
+ super().__init__()
1186
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1187
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1188
+
1189
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1190
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
1191
+
1192
+ def forward(self, features, **kwargs):
1193
+ x = self.dense(features)
1194
+ x = gelu(x)
1195
+ x = self.layer_norm(x)
1196
+
1197
+ # project back to size of vocabulary with bias
1198
+ x = self.decoder(x) + self.bias
1199
+ return x
1200
+
1201
+
1202
+ @add_start_docstrings(
1203
+ """
1204
+ MPRNA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
1205
+ output) e.g. for GLUE tasks.
1206
+ """,
1207
+ MPRNA_START_DOCSTRING,
1208
+ )
1209
+ class MPRNAForSequenceClassification(MPRNAPreTrainedModel):
1210
+ def __init__(self, config):
1211
+ super().__init__(config)
1212
+ self.num_labels = config.num_labels
1213
+ self.config = config
1214
+
1215
+ self.MPRNA = MPRNAModel(config, add_pooling_layer=False)
1216
+ self.classifier = MPRNAClassificationHead(config)
1217
+
1218
+ self.init_weights()
1219
+
1220
+ @add_start_docstrings_to_model_forward(
1221
+ MPRNA_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1222
+ )
1223
+ @add_code_sample_docstrings(
1224
+ checkpoint=_CHECKPOINT_FOR_DOC,
1225
+ output_type=SequenceClassifierOutput,
1226
+ config_class=_CONFIG_FOR_DOC,
1227
+ )
1228
+ def forward(
1229
+ self,
1230
+ input_ids: Optional[torch.LongTensor] = None,
1231
+ attention_mask: Optional[torch.Tensor] = None,
1232
+ position_ids: Optional[torch.LongTensor] = None,
1233
+ head_mask: Optional[torch.Tensor] = None,
1234
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1235
+ labels: Optional[torch.LongTensor] = None,
1236
+ output_attentions: Optional[bool] = None,
1237
+ output_hidden_states: Optional[bool] = None,
1238
+ return_dict: Optional[bool] = None,
1239
+ ) -> Union[Tuple, SequenceClassifierOutput]:
1240
+ r"""
1241
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1242
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1243
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1244
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1245
+ """
1246
+ return_dict = (
1247
+ return_dict if return_dict is not None else self.config.use_return_dict
1248
+ )
1249
+
1250
+ outputs = self.MPRNA(
1251
+ input_ids,
1252
+ attention_mask=attention_mask,
1253
+ position_ids=position_ids,
1254
+ head_mask=head_mask,
1255
+ inputs_embeds=inputs_embeds,
1256
+ output_attentions=output_attentions,
1257
+ output_hidden_states=output_hidden_states,
1258
+ return_dict=return_dict,
1259
+ )
1260
+ sequence_output = outputs[0]
1261
+ logits = self.classifier(sequence_output)
1262
+
1263
+ loss = None
1264
+ if labels is not None:
1265
+ labels = labels.to(logits.device)
1266
+
1267
+ if self.config.problem_type is None:
1268
+ if self.num_labels == 1:
1269
+ self.config.problem_type = "regression"
1270
+ elif self.num_labels > 1 and (
1271
+ labels.dtype == torch.long or labels.dtype == torch.int
1272
+ ):
1273
+ self.config.problem_type = "single_label_classification"
1274
+ else:
1275
+ self.config.problem_type = "multi_label_classification"
1276
+
1277
+ if self.config.problem_type == "regression":
1278
+ loss_fct = MSELoss()
1279
+ if self.num_labels == 1:
1280
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1281
+ else:
1282
+ loss = loss_fct(logits, labels)
1283
+ elif self.config.problem_type == "single_label_classification":
1284
+ loss_fct = CrossEntropyLoss()
1285
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1286
+ elif self.config.problem_type == "multi_label_classification":
1287
+ loss_fct = BCEWithLogitsLoss()
1288
+ loss = loss_fct(logits, labels)
1289
+
1290
+ if not return_dict:
1291
+ output = (logits,) + outputs[2:]
1292
+ return ((loss,) + output) if loss is not None else output
1293
+
1294
+ return SequenceClassifierOutput(
1295
+ loss=loss,
1296
+ logits=logits,
1297
+ hidden_states=outputs.hidden_states,
1298
+ attentions=outputs.attentions,
1299
+ )
1300
+
1301
+
1302
+ @add_start_docstrings(
1303
+ """
1304
+ MPRNA Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1305
+ Named-Entity-Recognition (NER) tasks.
1306
+ """,
1307
+ MPRNA_START_DOCSTRING,
1308
+ )
1309
+ class MPRNAForTokenClassification(MPRNAPreTrainedModel):
1310
+ def __init__(self, config):
1311
+ super().__init__(config)
1312
+ self.num_labels = config.num_labels
1313
+
1314
+ self.MPRNA = MPRNAModel(config, add_pooling_layer=False)
1315
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
1316
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1317
+
1318
+ self.init_weights()
1319
+
1320
+ @add_start_docstrings_to_model_forward(
1321
+ MPRNA_INPUTS_DOCSTRING.format("batch_size, sequence_length")
1322
+ )
1323
+ @add_code_sample_docstrings(
1324
+ checkpoint=_CHECKPOINT_FOR_DOC,
1325
+ output_type=TokenClassifierOutput,
1326
+ config_class=_CONFIG_FOR_DOC,
1327
+ )
1328
+ def forward(
1329
+ self,
1330
+ input_ids: Optional[torch.LongTensor] = None,
1331
+ attention_mask: Optional[torch.Tensor] = None,
1332
+ position_ids: Optional[torch.LongTensor] = None,
1333
+ head_mask: Optional[torch.Tensor] = None,
1334
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1335
+ labels: Optional[torch.LongTensor] = None,
1336
+ output_attentions: Optional[bool] = None,
1337
+ output_hidden_states: Optional[bool] = None,
1338
+ return_dict: Optional[bool] = None,
1339
+ ) -> Union[Tuple, TokenClassifierOutput]:
1340
+ r"""
1341
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1342
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1343
+ """
1344
+ return_dict = (
1345
+ return_dict if return_dict is not None else self.config.use_return_dict
1346
+ )
1347
+
1348
+ outputs = self.MPRNA(
1349
+ input_ids,
1350
+ attention_mask=attention_mask,
1351
+ position_ids=position_ids,
1352
+ head_mask=head_mask,
1353
+ inputs_embeds=inputs_embeds,
1354
+ output_attentions=output_attentions,
1355
+ output_hidden_states=output_hidden_states,
1356
+ return_dict=return_dict,
1357
+ )
1358
+
1359
+ sequence_output = outputs[0]
1360
+
1361
+ sequence_output = self.dropout(sequence_output)
1362
+ logits = self.classifier(sequence_output)
1363
+
1364
+ loss = None
1365
+ if labels is not None:
1366
+ loss_fct = CrossEntropyLoss()
1367
+
1368
+ labels = labels.to(logits.device)
1369
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1370
+
1371
+ if not return_dict:
1372
+ output = (logits,) + outputs[2:]
1373
+ return ((loss,) + output) if loss is not None else output
1374
+
1375
+ return TokenClassifierOutput(
1376
+ loss=loss,
1377
+ logits=logits,
1378
+ hidden_states=outputs.hidden_states,
1379
+ attentions=outputs.attentions,
1380
+ )
1381
+
1382
+
1383
+ class MPRNAClassificationHead(nn.Module):
1384
+ """Head for sentence-level classification tasks."""
1385
+
1386
+ def __init__(self, config):
1387
+ super().__init__()
1388
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
1389
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
1390
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
1391
+
1392
+ def forward(self, features, **kwargs):
1393
+ x = features[:, 0, :] # take <s> token (equiv. to [CLS])
1394
+ x = self.dropout(x)
1395
+ x = self.dense(x)
1396
+ x = torch.tanh(x)
1397
+ x = self.dropout(x)
1398
+ x = self.out_proj(x)
1399
+ return x
1400
+
1401
+
1402
+ def create_position_ids_from_input_ids(
1403
+ input_ids, padding_idx, past_key_values_length=0
1404
+ ):
1405
+ """
1406
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
1407
+ are ignored. This is modified from fairseq's `utils.make_positions`.
1408
+
1409
+ Args:
1410
+ x: torch.Tensor x:
1411
+
1412
+ Returns: torch.Tensor
1413
+ """
1414
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
1415
+ mask = input_ids.ne(padding_idx).int()
1416
+ incremental_indices = (
1417
+ torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
1418
+ ) * mask
1419
+ return incremental_indices.long() + padding_idx
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "<cls>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<eos>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "mask_token": {
17
+ "content": "<mask>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "pad_token": {
24
+ "content": "<pad>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "<unk>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<cls>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<eos>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "23": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "<cls>",
46
+ "eos_token": "<eos>",
47
+ "mask_token": "<mask>",
48
+ "model_max_length": 1000000000000000019884624838656,
49
+ "pad_token": "<pad>",
50
+ "tokenizer_class": "EsmTokenizer",
51
+ "unk_token": "<unk>"
52
+ }
vocab.txt ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <cls>
2
+ <pad>
3
+ <eos>
4
+ <unk>
5
+ A
6
+ C
7
+ G
8
+ T
9
+ N
10
+ U
11
+ a
12
+ c
13
+ g
14
+ t
15
+ n
16
+ u
17
+ (
18
+ )
19
+ .
20
+ *
21
+ 1
22
+ 2
23
+ 3
24
+ <mask>