yangboyuan commited on
Commit
2502318
1 Parent(s): 6a9f9bd

End of training

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: google/vivit-b-16x2-kinetics400
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vivit-b-16x2-kinetics400-finetuned-vivit-severity
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vivit-b-16x2-kinetics400-finetuned-vivit-severity
17
+
18
+ This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.0088
21
+ - Accuracy: 0.8530
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 1
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 5210
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 2.0504 | 0.1 | 521 | 0.9279 | 0.8280 |
54
+ | 1.1617 | 1.1 | 1042 | 0.9890 | 0.8280 |
55
+ | 0.5088 | 2.1 | 1563 | 0.8413 | 0.8172 |
56
+ | 0.7947 | 3.1 | 2084 | 0.7631 | 0.8423 |
57
+ | 0.0028 | 4.1 | 2605 | 0.8718 | 0.8459 |
58
+ | 0.7502 | 5.1 | 3126 | 0.9022 | 0.8495 |
59
+ | 0.814 | 6.1 | 3647 | 0.8467 | 0.8423 |
60
+ | 0.5251 | 7.1 | 4168 | 0.8914 | 0.8602 |
61
+ | 0.9977 | 8.1 | 4689 | 0.9599 | 0.8530 |
62
+ | 0.0007 | 9.1 | 5210 | 1.0088 | 0.8530 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.42.4
68
+ - Pytorch 2.0.1+cu117
69
+ - Datasets 2.20.0
70
+ - Tokenizers 0.19.1