update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: camembert-keyword-discriminator
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# camembert-keyword-discriminator
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2180
|
23 |
+
- Precision: 0.6646
|
24 |
+
- Recall: 0.7047
|
25 |
+
- Accuracy: 0.9344
|
26 |
+
- F1: 0.6841
|
27 |
+
- Ent/precision: 0.7185
|
28 |
+
- Ent/accuracy: 0.8157
|
29 |
+
- Ent/f1: 0.7640
|
30 |
+
- Con/precision: 0.5324
|
31 |
+
- Con/accuracy: 0.4860
|
32 |
+
- Con/f1: 0.5082
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 2e-05
|
52 |
+
- train_batch_size: 16
|
53 |
+
- eval_batch_size: 16
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 8
|
58 |
+
- mixed_precision_training: Native AMP
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | Ent/precision | Ent/accuracy | Ent/f1 | Con/precision | Con/accuracy | Con/f1 |
|
63 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:|:-------------:|:------------:|:------:|:-------------:|:------------:|:------:|
|
64 |
+
| 0.2016 | 1.0 | 1875 | 0.1910 | 0.5947 | 0.7125 | 0.9243 | 0.6483 | 0.6372 | 0.8809 | 0.7395 | 0.4560 | 0.3806 | 0.4149 |
|
65 |
+
| 0.1454 | 2.0 | 3750 | 0.1632 | 0.6381 | 0.7056 | 0.9324 | 0.6701 | 0.6887 | 0.8291 | 0.7524 | 0.5064 | 0.4621 | 0.4833 |
|
66 |
+
| 0.1211 | 3.0 | 5625 | 0.1702 | 0.6703 | 0.6678 | 0.9343 | 0.6690 | 0.7120 | 0.7988 | 0.7529 | 0.5471 | 0.4094 | 0.4684 |
|
67 |
+
| 0.1021 | 4.0 | 7500 | 0.1745 | 0.6777 | 0.6708 | 0.9351 | 0.6742 | 0.7206 | 0.7956 | 0.7562 | 0.5557 | 0.4248 | 0.4815 |
|
68 |
+
| 0.0886 | 5.0 | 9375 | 0.1913 | 0.6540 | 0.7184 | 0.9340 | 0.6847 | 0.7022 | 0.8396 | 0.7648 | 0.5288 | 0.4795 | 0.5030 |
|
69 |
+
| 0.0781 | 6.0 | 11250 | 0.2021 | 0.6605 | 0.7132 | 0.9344 | 0.6858 | 0.7139 | 0.8258 | 0.7658 | 0.5293 | 0.4913 | 0.5096 |
|
70 |
+
| 0.0686 | 7.0 | 13125 | 0.2127 | 0.6539 | 0.7132 | 0.9337 | 0.6822 | 0.7170 | 0.8172 | 0.7638 | 0.5112 | 0.5083 | 0.5098 |
|
71 |
+
| 0.0667 | 8.0 | 15000 | 0.2180 | 0.6646 | 0.7047 | 0.9344 | 0.6841 | 0.7185 | 0.8157 | 0.7640 | 0.5324 | 0.4860 | 0.5082 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.19.2
|
77 |
+
- Pytorch 1.11.0+cu113
|
78 |
+
- Datasets 2.2.2
|
79 |
+
- Tokenizers 0.12.1
|