yanekyuk commited on
Commit
7590c26
1 Parent(s): 0dbaa65

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: camembert-keyword-discriminator
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # camembert-keyword-discriminator
19
+
20
+ This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2180
23
+ - Precision: 0.6646
24
+ - Recall: 0.7047
25
+ - Accuracy: 0.9344
26
+ - F1: 0.6841
27
+ - Ent/precision: 0.7185
28
+ - Ent/accuracy: 0.8157
29
+ - Ent/f1: 0.7640
30
+ - Con/precision: 0.5324
31
+ - Con/accuracy: 0.4860
32
+ - Con/f1: 0.5082
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 2e-05
52
+ - train_batch_size: 16
53
+ - eval_batch_size: 16
54
+ - seed: 42
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 8
58
+ - mixed_precision_training: Native AMP
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | Ent/precision | Ent/accuracy | Ent/f1 | Con/precision | Con/accuracy | Con/f1 |
63
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:|:-------------:|:------------:|:------:|:-------------:|:------------:|:------:|
64
+ | 0.2016 | 1.0 | 1875 | 0.1910 | 0.5947 | 0.7125 | 0.9243 | 0.6483 | 0.6372 | 0.8809 | 0.7395 | 0.4560 | 0.3806 | 0.4149 |
65
+ | 0.1454 | 2.0 | 3750 | 0.1632 | 0.6381 | 0.7056 | 0.9324 | 0.6701 | 0.6887 | 0.8291 | 0.7524 | 0.5064 | 0.4621 | 0.4833 |
66
+ | 0.1211 | 3.0 | 5625 | 0.1702 | 0.6703 | 0.6678 | 0.9343 | 0.6690 | 0.7120 | 0.7988 | 0.7529 | 0.5471 | 0.4094 | 0.4684 |
67
+ | 0.1021 | 4.0 | 7500 | 0.1745 | 0.6777 | 0.6708 | 0.9351 | 0.6742 | 0.7206 | 0.7956 | 0.7562 | 0.5557 | 0.4248 | 0.4815 |
68
+ | 0.0886 | 5.0 | 9375 | 0.1913 | 0.6540 | 0.7184 | 0.9340 | 0.6847 | 0.7022 | 0.8396 | 0.7648 | 0.5288 | 0.4795 | 0.5030 |
69
+ | 0.0781 | 6.0 | 11250 | 0.2021 | 0.6605 | 0.7132 | 0.9344 | 0.6858 | 0.7139 | 0.8258 | 0.7658 | 0.5293 | 0.4913 | 0.5096 |
70
+ | 0.0686 | 7.0 | 13125 | 0.2127 | 0.6539 | 0.7132 | 0.9337 | 0.6822 | 0.7170 | 0.8172 | 0.7638 | 0.5112 | 0.5083 | 0.5098 |
71
+ | 0.0667 | 8.0 | 15000 | 0.2180 | 0.6646 | 0.7047 | 0.9344 | 0.6841 | 0.7185 | 0.8157 | 0.7640 | 0.5324 | 0.4860 | 0.5082 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.19.2
77
+ - Pytorch 1.11.0+cu113
78
+ - Datasets 2.2.2
79
+ - Tokenizers 0.12.1