yam3333 commited on
Commit
ecc3144
·
verified ·
1 Parent(s): f5c8d63

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-xlm-r-multilingual-v1
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:383
11
+ - loss:CosineSimilarityLoss
12
+ widget:
13
+ - source_sentence: ब्यवसायसञ्चालन नभएको सिफारिस गर्न सेवा शुल्क तथा दस्तुर कति लाग्छ
14
+ sentences:
15
+ - <unk>
16
+ - <unk>
17
+ - <unk>
18
+ - source_sentence: स्वास्थ्य संस्था दर्ता गर्न लाग्ने सेवा शुल्क कति ह
19
+ sentences:
20
+ - <unk>
21
+ - <unk>
22
+ - <unk>
23
+ - source_sentence: अस्थायीबसोबास सिफारिस गर्नको लागी आवश्यक कागजातहरु के के चाहिन्छ
24
+ sentences:
25
+ - <unk>
26
+ - <unk>
27
+ - <unk>
28
+ - source_sentence: पहिलो पल्ट सम्पत्ति कर तिर्न आवश्यक कागजातहरु के के हुन्
29
+ sentences:
30
+ - <unk>
31
+ - निःशुल्क
32
+ - <unk>
33
+ - source_sentence: आर्थिक अवस्था बलियो वा सम्पन्नता प्रमाणित गर्न आवश्यक कागजातहरु
34
+ के के हुन्
35
+ sentences:
36
+ - <unk>
37
+ - <unk>
38
+ - <unk>
39
+ ---
40
+
41
+ # SentenceTransformer based on sentence-transformers/paraphrase-xlm-r-multilingual-v1
42
+
43
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** Sentence Transformer
49
+ - **Base model:** [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1) <!-- at revision 000e995b707ecea1b901208915ff3533783ec13d -->
50
+ - **Maximum Sequence Length:** 128 tokens
51
+ - **Output Dimensionality:** 768 dimensions
52
+ - **Similarity Function:** Cosine Similarity
53
+ <!-- - **Training Dataset:** Unknown -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
60
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
61
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
62
+
63
+ ### Full Model Architecture
64
+
65
+ ```
66
+ SentenceTransformer(
67
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
68
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("yam3333/paraphrase-xlm-r-multilingual-v1-finetuned")
88
+ # Run inference
89
+ sentences = [
90
+ 'आर्थिक अवस्था बलियो वा सम्पन्नता प्रमाणित गर्न आवश्यक कागजातहरु के के हुन्',
91
+ '<unk>',
92
+ '<unk>',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 768]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 383 training samples
148
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
149
+ * Approximate statistics based on the first 383 samples:
150
+ | | sentence_0 | sentence_1 | label |
151
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------|
152
+ | type | string | string | float |
153
+ | details | <ul><li>min: 9 tokens</li><li>mean: 17.3 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
154
+ * Samples:
155
+ | sentence_0 | sentence_1 | label |
156
+ |:--------------------------------------------------------------------------------|:-------------------|:-----------------|
157
+ | <code>विज्ञापन कर तिर्न लाग्ने समय कति हो</code> | <code><unk></code> | <code>1.0</code> |
158
+ | <code>संरक्षक सिफारिस (संस्थागत) गर्न कति समय लाग्छ</code> | <code><unk></code> | <code>1.0</code> |
159
+ | <code>विपन्नविद्यार्थी छात्रबृत्ति सिफारिस गर्नु परेमा सेवा शुल्क कति हो</code> | <code><unk></code> | <code>1.0</code> |
160
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
161
+ ```json
162
+ {
163
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
164
+ }
165
+ ```
166
+
167
+ ### Training Hyperparameters
168
+ #### Non-Default Hyperparameters
169
+
170
+ - `per_device_train_batch_size`: 16
171
+ - `per_device_eval_batch_size`: 16
172
+ - `num_train_epochs`: 4
173
+ - `multi_dataset_batch_sampler`: round_robin
174
+
175
+ #### All Hyperparameters
176
+ <details><summary>Click to expand</summary>
177
+
178
+ - `overwrite_output_dir`: False
179
+ - `do_predict`: False
180
+ - `eval_strategy`: no
181
+ - `prediction_loss_only`: True
182
+ - `per_device_train_batch_size`: 16
183
+ - `per_device_eval_batch_size`: 16
184
+ - `per_gpu_train_batch_size`: None
185
+ - `per_gpu_eval_batch_size`: None
186
+ - `gradient_accumulation_steps`: 1
187
+ - `eval_accumulation_steps`: None
188
+ - `torch_empty_cache_steps`: None
189
+ - `learning_rate`: 5e-05
190
+ - `weight_decay`: 0.0
191
+ - `adam_beta1`: 0.9
192
+ - `adam_beta2`: 0.999
193
+ - `adam_epsilon`: 1e-08
194
+ - `max_grad_norm`: 1
195
+ - `num_train_epochs`: 4
196
+ - `max_steps`: -1
197
+ - `lr_scheduler_type`: linear
198
+ - `lr_scheduler_kwargs`: {}
199
+ - `warmup_ratio`: 0.0
200
+ - `warmup_steps`: 0
201
+ - `log_level`: passive
202
+ - `log_level_replica`: warning
203
+ - `log_on_each_node`: True
204
+ - `logging_nan_inf_filter`: True
205
+ - `save_safetensors`: True
206
+ - `save_on_each_node`: False
207
+ - `save_only_model`: False
208
+ - `restore_callback_states_from_checkpoint`: False
209
+ - `no_cuda`: False
210
+ - `use_cpu`: False
211
+ - `use_mps_device`: False
212
+ - `seed`: 42
213
+ - `data_seed`: None
214
+ - `jit_mode_eval`: False
215
+ - `use_ipex`: False
216
+ - `bf16`: False
217
+ - `fp16`: False
218
+ - `fp16_opt_level`: O1
219
+ - `half_precision_backend`: auto
220
+ - `bf16_full_eval`: False
221
+ - `fp16_full_eval`: False
222
+ - `tf32`: None
223
+ - `local_rank`: 0
224
+ - `ddp_backend`: None
225
+ - `tpu_num_cores`: None
226
+ - `tpu_metrics_debug`: False
227
+ - `debug`: []
228
+ - `dataloader_drop_last`: False
229
+ - `dataloader_num_workers`: 0
230
+ - `dataloader_prefetch_factor`: None
231
+ - `past_index`: -1
232
+ - `disable_tqdm`: False
233
+ - `remove_unused_columns`: True
234
+ - `label_names`: None
235
+ - `load_best_model_at_end`: False
236
+ - `ignore_data_skip`: False
237
+ - `fsdp`: []
238
+ - `fsdp_min_num_params`: 0
239
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
240
+ - `fsdp_transformer_layer_cls_to_wrap`: None
241
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
242
+ - `deepspeed`: None
243
+ - `label_smoothing_factor`: 0.0
244
+ - `optim`: adamw_torch
245
+ - `optim_args`: None
246
+ - `adafactor`: False
247
+ - `group_by_length`: False
248
+ - `length_column_name`: length
249
+ - `ddp_find_unused_parameters`: None
250
+ - `ddp_bucket_cap_mb`: None
251
+ - `ddp_broadcast_buffers`: False
252
+ - `dataloader_pin_memory`: True
253
+ - `dataloader_persistent_workers`: False
254
+ - `skip_memory_metrics`: True
255
+ - `use_legacy_prediction_loop`: False
256
+ - `push_to_hub`: False
257
+ - `resume_from_checkpoint`: None
258
+ - `hub_model_id`: None
259
+ - `hub_strategy`: every_save
260
+ - `hub_private_repo`: False
261
+ - `hub_always_push`: False
262
+ - `gradient_checkpointing`: False
263
+ - `gradient_checkpointing_kwargs`: None
264
+ - `include_inputs_for_metrics`: False
265
+ - `include_for_metrics`: []
266
+ - `eval_do_concat_batches`: True
267
+ - `fp16_backend`: auto
268
+ - `push_to_hub_model_id`: None
269
+ - `push_to_hub_organization`: None
270
+ - `mp_parameters`:
271
+ - `auto_find_batch_size`: False
272
+ - `full_determinism`: False
273
+ - `torchdynamo`: None
274
+ - `ray_scope`: last
275
+ - `ddp_timeout`: 1800
276
+ - `torch_compile`: False
277
+ - `torch_compile_backend`: None
278
+ - `torch_compile_mode`: None
279
+ - `dispatch_batches`: None
280
+ - `split_batches`: None
281
+ - `include_tokens_per_second`: False
282
+ - `include_num_input_tokens_seen`: False
283
+ - `neftune_noise_alpha`: None
284
+ - `optim_target_modules`: None
285
+ - `batch_eval_metrics`: False
286
+ - `eval_on_start`: False
287
+ - `use_liger_kernel`: False
288
+ - `eval_use_gather_object`: False
289
+ - `average_tokens_across_devices`: False
290
+ - `prompts`: None
291
+ - `batch_sampler`: batch_sampler
292
+ - `multi_dataset_batch_sampler`: round_robin
293
+
294
+ </details>
295
+
296
+ ### Framework Versions
297
+ - Python: 3.10.14
298
+ - Sentence Transformers: 3.3.0
299
+ - Transformers: 4.46.2
300
+ - PyTorch: 2.4.0
301
+ - Accelerate: 0.34.2
302
+ - Datasets: 3.1.0
303
+ - Tokenizers: 0.20.0
304
+
305
+ ## Citation
306
+
307
+ ### BibTeX
308
+
309
+ #### Sentence Transformers
310
+ ```bibtex
311
+ @inproceedings{reimers-2019-sentence-bert,
312
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
313
+ author = "Reimers, Nils and Gurevych, Iryna",
314
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
315
+ month = "11",
316
+ year = "2019",
317
+ publisher = "Association for Computational Linguistics",
318
+ url = "https://arxiv.org/abs/1908.10084",
319
+ }
320
+ ```
321
+
322
+ <!--
323
+ ## Glossary
324
+
325
+ *Clearly define terms in order to be accessible across audiences.*
326
+ -->
327
+
328
+ <!--
329
+ ## Model Card Authors
330
+
331
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
332
+ -->
333
+
334
+ <!--
335
+ ## Model Card Contact
336
+
337
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
338
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./fine_tuned_paraphrase_model",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fc0426fd7284671855506ab658cb3ea0204822665774d5e2d03714ffeb353c0
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c2ccb33b55c4d157419a2105d6e033f7514c2baa6306471c56b86ab02787613
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "sp_model_kwargs": {},
58
+ "stride": 0,
59
+ "tokenizer_class": "XLMRobertaTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "<unk>"
63
+ }