caduceus_base / modeling_caduceus.py
yairschiff's picture
Update modeling_caduceus.py
a60b4be verified
raw
history blame contribute delete
No virus
26.6 kB
"""Caduceus model for Hugging Face.
"""
import math
from functools import partial
from typing import Optional, Tuple, Union
import torch
from mamba_ssm.modules.mamba_simple import Mamba, Block
from torch import nn
from torch.nn import functional as F
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithNoAttention, MaskedLMOutput, SequenceClassifierOutput
try:
from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
except ImportError:
RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
from .configuration_caduceus import CaduceusConfig
from .modeling_rcps import RCPSAddNormWrapper, RCPSEmbedding, RCPSLMHead, RCPSMambaBlock
def create_block(
d_model,
ssm_cfg=None,
norm_epsilon=1e-5,
rms_norm=False,
residual_in_fp32=False,
fused_add_norm=False,
layer_idx=None,
bidirectional=True,
bidirectional_strategy="add",
bidirectional_weight_tie=True,
rcps=False,
device=None,
dtype=None,
):
"""Create Caduceus block.
Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py
"""
if ssm_cfg is None:
ssm_cfg = {}
factory_kwargs = {"device": device, "dtype": dtype}
bidirectional_kwargs = {
"bidirectional": bidirectional,
"bidirectional_strategy": bidirectional_strategy,
"bidirectional_weight_tie": bidirectional_weight_tie,
}
mixer_cls = partial(BiMambaWrapper, layer_idx=layer_idx, **ssm_cfg, **bidirectional_kwargs, **factory_kwargs)
norm_cls = partial(
nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
)
block_cls = RCPSMambaBlock if rcps else Block
block = block_cls(
d_model,
mixer_cls,
norm_cls=norm_cls,
fused_add_norm=fused_add_norm,
residual_in_fp32=residual_in_fp32,
)
block.layer_idx = layer_idx
return block
class BiMambaWrapper(nn.Module):
"""Thin wrapper around Mamba to support bi-directionality."""
def __init__(
self,
d_model: int,
bidirectional: bool = True,
bidirectional_strategy: Optional[str] = "add",
bidirectional_weight_tie: bool = True,
**mamba_kwargs,
):
super().__init__()
if bidirectional and bidirectional_strategy is None:
bidirectional_strategy = "add" # Default strategy: `add`
if bidirectional and bidirectional_strategy not in ["add", "ew_multiply"]:
raise NotImplementedError(f"`{bidirectional_strategy}` strategy for bi-directionality is not implemented!")
self.bidirectional = bidirectional
self.bidirectional_strategy = bidirectional_strategy
self.mamba_fwd = Mamba(
d_model=d_model,
**mamba_kwargs
)
if bidirectional:
self.mamba_rev = Mamba(
d_model=d_model,
**mamba_kwargs
)
if bidirectional_weight_tie: # Tie in and out projections (where most of param count lies)
self.mamba_rev.in_proj.weight = self.mamba_fwd.in_proj.weight
self.mamba_rev.in_proj.bias = self.mamba_fwd.in_proj.bias
self.mamba_rev.out_proj.weight = self.mamba_fwd.out_proj.weight
self.mamba_rev.out_proj.bias = self.mamba_fwd.out_proj.bias
else:
self.mamba_rev = None
def forward(self, hidden_states, inference_params=None):
"""Bidirectional-enabled forward pass
hidden_states: (B, L, D)
Returns: same shape as hidden_states
"""
out = self.mamba_fwd(hidden_states, inference_params=inference_params)
if self.bidirectional:
out_rev = self.mamba_rev(
hidden_states.flip(dims=(1,)), # Flip along the sequence length dimension
inference_params=inference_params
).flip(dims=(1,)) # Flip back for combining with forward hidden states
if self.bidirectional_strategy == "add":
out = out + out_rev
elif self.bidirectional_strategy == "ew_multiply":
out = out * out_rev
else:
raise NotImplementedError(f"`{self.bidirectional_strategy}` for bi-directionality not implemented!")
return out
class CaduceusEmbeddings(nn.Module):
def __init__(
self,
config: CaduceusConfig,
device=None,
dtype=None,
):
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
if config.rcps:
self.word_embeddings = RCPSEmbedding(
config.vocab_size, config.d_model, config.complement_map, **factory_kwargs
)
else:
self.word_embeddings = nn.Embedding(config.vocab_size, config.d_model, **factory_kwargs)
def forward(self, input_ids):
"""
input_ids: (batch, seqlen)
"""
return self.word_embeddings(input_ids)
class CaduceusMixerModel(nn.Module):
def __init__(
self,
config: CaduceusConfig,
device=None,
dtype=None,
) -> None:
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
self.fused_add_norm = config.fused_add_norm
self.rcps = config.rcps
self.residual_in_fp32 = config.residual_in_fp32
self.embeddings = CaduceusEmbeddings(config, **factory_kwargs)
# Mamba changes the order of residual and layer norm:
# Instead of LN -> Attn / MLP -> Add, we do:
# Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
# the main branch (output of MLP / Mixer). The model definition is unchanged.
# This is for performance reason: we can fuse add + layer_norm.
if config.fused_add_norm:
if layer_norm_fn is None or rms_norm_fn is None:
raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")
self.layers = nn.ModuleList(
[
create_block(
config.d_model,
ssm_cfg=config.ssm_cfg,
norm_epsilon=config.norm_epsilon,
rms_norm=config.rms_norm,
residual_in_fp32=config.residual_in_fp32,
fused_add_norm=config.fused_add_norm,
layer_idx=i,
bidirectional=config.bidirectional,
bidirectional_strategy=config.bidirectional_strategy,
bidirectional_weight_tie=config.bidirectional_weight_tie,
rcps=config.rcps,
**factory_kwargs,
)
for i in range(config.n_layer)
]
)
norm_f = (nn.LayerNorm if not config.rms_norm else RMSNorm)(
config.d_model, eps=config.norm_epsilon, **factory_kwargs
)
self.norm_f = norm_f if (config.fused_add_norm or not config.rcps) else RCPSAddNormWrapper(norm_f)
def forward(self, input_ids, inputs_embeds=None, output_hidden_states=False):
"""Mixer forward."""
all_hidden_states = []
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embeddings(input_ids)
residual = None
for layer in self.layers:
if output_hidden_states:
all_hidden_states.append(hidden_states)
# TODO: Add support for gradient checkpointing
hidden_states, residual = layer(
hidden_states, residual, inference_params=None
)
if not self.fused_add_norm:
if self.rcps:
# Set prenorm=False here since we don't need the residual
hidden_states = self.norm_f(hidden_states, residual=residual, prenorm=False)
else:
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
else:
fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
if self.rcps:
# Set prenorm=False here since we don't need the residual
hidden_states_fwd = fused_add_norm_fn(
hidden_states[..., :hidden_states.shape[-1] // 2],
self.norm_f.weight,
self.norm_f.bias,
eps=self.norm_f.eps,
residual=residual[..., :hidden_states.shape[-1] // 2],
prenorm=False,
residual_in_fp32=self.residual_in_fp32,
)
hidden_states_rc = fused_add_norm_fn(
hidden_states[..., hidden_states.shape[-1] // 2:].flip(dims=[-2, -1]),
self.norm_f.weight,
self.norm_f.bias,
eps=self.norm_f.eps,
residual=residual[..., hidden_states.shape[-1] // 2:].flip(dims=[-2, -1]),
prenorm=False,
residual_in_fp32=self.residual_in_fp32,
)
hidden_states = torch.cat([hidden_states_fwd, hidden_states_rc.flip(dims=[-2, -1])], dim=-1)
else:
# Set prenorm=False here since we don't need the residual
hidden_states = fused_add_norm_fn(
hidden_states,
self.norm_f.weight,
self.norm_f.bias,
eps=self.norm_f.eps,
residual=residual,
prenorm=False,
residual_in_fp32=self.residual_in_fp32,
)
if output_hidden_states:
all_hidden_states.append(hidden_states)
return hidden_states, all_hidden_states
def cross_entropy(logits, y, ignore_index=-100):
"""Cross entropy loss."""
logits = logits.view(-1, logits.shape[-1])
y = y.view(-1)
return F.cross_entropy(logits, y, ignore_index=ignore_index)
def weighted_cross_entropy(logits, y, loss_weight, ignore_index=-100):
"""Weighted cross entropy loss (discounts certain tokens, e.g., repeated base pairs in genome)."""
logits = logits.view(-1, logits.shape[-1])
y = y.view(-1)
ce = F.cross_entropy(logits, y, ignore_index=ignore_index, reduction="none")
loss_weight = loss_weight.view(-1)
loss_weight[y == ignore_index] = 0.0
# TODO: Follows GPN implementation, but should we remove weight normalization?
return (ce * (loss_weight / loss_weight.sum())).sum()
class CaduceusPreTrainedModel(PreTrainedModel):
"""PreTrainedModel wrapper for Caduceus backbone."""
config_class = CaduceusConfig
base_model_prefix = "caduceus"
supports_gradient_checkpointing = False
_no_split_modules = ["BiMambaWrapper"]
def _init_weights(
self,
module,
initializer_range=0.02, # Now only used for embedding layer.
**kwargs,
):
"""Adapted from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py"""
n_layer = self.config.n_layer
initialized_cfg = self.config.initializer_cfg if self.config.initializer_cfg is not None else {}
rescale_prenorm_residual = initialized_cfg.get("rescale_prenorm_residual", True)
initializer_range = initialized_cfg.get("initializer_range", initializer_range)
n_residuals_per_layer = initialized_cfg.get("n_residuals_per_layer", 1)
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=initializer_range)
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth.
# > Scale the weights of residual layers at initialization by a factor of 1/√N where N is the # of
# residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight", "fc2.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(n_residuals_per_layer * n_layer)
class Caduceus(CaduceusPreTrainedModel):
"""Caduceus model that can be instantiated using HF patterns."""
def __init__(self, config: CaduceusConfig, device=None, dtype=None, **kwargs):
super().__init__(config)
if config.rcps:
assert config.complement_map is not None, "Complement map must be provided for RCPS."
# Adjust vocab size and complement maps if vocab padding is set.
if config.vocab_size % config.pad_vocab_size_multiple != 0:
config.vocab_size += config.pad_vocab_size_multiple - (config.vocab_size % config.pad_vocab_size_multiple)
if config.complement_map is not None and config.vocab_size > len(config.complement_map):
for i in range(len(config.complement_map), config.vocab_size):
config.complement_map[i] = i
self.config = config
factory_kwargs = {"device": device, "dtype": dtype}
self.backbone = CaduceusMixerModel(config, **factory_kwargs, **kwargs)
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[torch.Tensor, Tuple, BaseModelOutputWithNoAttention]:
"""HF-compatible forward method."""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states, all_hidden_states = self.backbone(
input_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states
)
if return_dict:
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states if output_hidden_states else None
)
elif output_hidden_states:
return hidden_states, all_hidden_states
else:
return hidden_states
class CaduceusForMaskedLM(CaduceusPreTrainedModel):
"""HF-compatible Caduceus model for masked language modeling."""
def __init__(self, config: CaduceusConfig, device=None, dtype=None, **kwargs):
super().__init__(config, **kwargs)
factory_kwargs = {"device": device, "dtype": dtype}
self.caduceus = Caduceus(config, **factory_kwargs, **kwargs)
if config.rcps:
self.lm_head = RCPSLMHead(
complement_map=self.config.complement_map, # Use caduceus config as it might have been updated
vocab_size=self.config.vocab_size, # Use caduceus config as it might have been updated
true_dim=config.d_model,
dtype=dtype
)
else:
self.lm_head = nn.Linear(
config.d_model,
self.config.vocab_size, # Use caduceus config as it might have been updated
bias=False,
**factory_kwargs
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.caduceus.backbone.embeddings.word_embeddings
def set_input_embeddings(self, value):
if self.config.rcps:
raise NotImplementedError("Setting input embeddings for RCPS LM is not supported.")
self.caduceus.backbone.embeddings.word_embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
"""Overrides output embeddings."""
if self.config.rcps:
raise NotImplementedError("Setting output embeddings for RCPS LM is not supported.")
self.lm_head = new_embeddings
def tie_weights(self):
"""Tie weights, accounting for RCPS."""
if self.config.rcps:
self.lm_head.set_weight(self.get_input_embeddings().weight)
else:
super().tie_weights()
def get_decoder(self):
"""Get decoder (backbone) for the model."""
return self.caduceus
def set_decoder(self, decoder):
"""Set decoder (backbone) for the model."""
self.caduceus = decoder
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
loss_weights: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
"""HF-compatible forward method."""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.caduceus(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
if loss_weights is not None:
loss = weighted_cross_entropy(logits, labels, loss_weights, ignore_index=self.config.pad_token_id)
else:
loss = cross_entropy(logits, labels, ignore_index=self.config.pad_token_id)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MaskedLMOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
class CaduceusForSequenceClassification(CaduceusPreTrainedModel):
def __init__(
self,
config: CaduceusConfig,
pooling_strategy: str = "mean",
conjoin_train: bool = False,
conjoin_eval: bool = False,
device=None,
dtype=None,
**kwargs):
super().__init__(config, **kwargs)
if pooling_strategy not in ["mean", "max", "first", "last"]:
raise NotImplementedError(f"Pooling strategy `{pooling_strategy}` not implemented.")
self.pooling_strategy = pooling_strategy
factory_kwargs = {"device": device, "dtype": dtype}
self.num_labels = kwargs.get("num_labels", config.num_labels)
self.caduceus = Caduceus(config, **factory_kwargs, **kwargs)
self.score = nn.Linear(config.d_model, self.num_labels, bias=False)
self.conjoin_train = conjoin_train
self.conjoin_eval = conjoin_eval
# Initialize weights and apply final processing
self.post_init()
self.init_scorer()
def init_scorer(self, initializer_range=0.02):
initializer_range = self.config.initializer_cfg.get("initializer_range", initializer_range) \
if self.config.initializer_cfg is not None else initializer_range
self.score.weight.data.normal_(std=initializer_range)
def get_input_embeddings(self):
return self.caduceus.backbone.embeddings.word_embeddings
def set_input_embeddings(self, value):
if self.config.rcps:
raise NotImplementedError("Setting input embeddings for RCPS LM is not supported.")
self.caduceus.backbone.embeddings.word_embeddings = value
def pool_hidden_states(self, hidden_states, sequence_length_dim=1):
"""Pools hidden states along sequence length dimension."""
if self.pooling_strategy == "mean": # Mean pooling along sequence length dimension
return hidden_states.mean(dim=sequence_length_dim)
if self.pooling_strategy == "max": # Max pooling along sequence length dimension
return hidden_states.max(dim=sequence_length_dim).values
if self.pooling_strategy == "last": # Use embedding of last token in the sequence
return hidden_states.moveaxis(hidden_states, sequence_length_dim, 0)[-1, ...]
if self.pooling_strategy == "first": # Use embedding of first token in the sequence
return hidden_states.moveaxis(hidden_states, sequence_length_dim, 0)[0, ...]
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Get hidden representations from the backbone
if self.config.rcps: # Hidden states have 2 * d_model channels for RCPS
transformer_outputs = self.caduceus(
input_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = torch.stack(
[
transformer_outputs[0][..., :self.config.d_model],
torch.flip(transformer_outputs[0][..., self.config.d_model:], dims=[1, 2])
],
dim=-1
)
elif self.conjoin_train or (self.conjoin_eval and not self.training): # For conjoining / post-hoc conjoining
assert input_ids is not None, "`input_ids` must be provided for conjoining."
assert input_ids.ndim == 3, "`input_ids` must be 3D tensor: channels corresponds to forward and rc strands."
transformer_outputs = self.caduceus(
input_ids[..., 0],
inputs_embeds=None,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
transformer_outputs_rc = self.caduceus(
input_ids[..., 1],
inputs_embeds=None,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Stack along channel dimension (dim=-1)
hidden_states = torch.stack([transformer_outputs[0], transformer_outputs_rc[0]], dim=-1)
else:
transformer_outputs = self.caduceus(
input_ids,
inputs_embeds=None,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Pool and get logits
pooled_hidden_states = self.pool_hidden_states(hidden_states)
# Potentially run `score` twice (with parameters shared) for conjoining
if hidden_states.ndim == 4: # bsz, seq_len, hidden_dim, 2 where last channel has the stacked fwd and rc reps
logits_fwd = self.score(pooled_hidden_states[..., 0])
logits_rc = self.score(pooled_hidden_states[..., 1])
logits = (logits_fwd + logits_rc) / 2
else:
logits = self.score(pooled_hidden_states)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
if self.num_labels == 1:
loss = F.mse_loss(logits.squeeze(), labels.squeeze())
else:
loss = F.mse_loss(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss = F.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss = F.binary_cross_entropy_with_logits(logits, labels)
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
)