yabichiu commited on
Commit
f536b55
1 Parent(s): b242146

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -3
README.md CHANGED
@@ -1,3 +1,148 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ From:
6
+ https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
7
+
8
+ ---
9
+ license: apache-2.0
10
+ ---
11
+
12
+ # Model Card for Mistral-7B-Instruct-v0.3
13
+
14
+ The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3.
15
+
16
+ Mistral-7B-v0.3 has the following changes compared to [Mistral-7B-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/edit/main/README.md)
17
+ - Extended vocabulary to 32768
18
+ - Supports v3 Tokenizer
19
+ - Supports function calling
20
+
21
+ ## Installation
22
+
23
+ It is recommended to use `mistralai/Mistral-7B-Instruct-v0.3` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling.
24
+
25
+ ```
26
+ pip install mistral_inference
27
+ ```
28
+
29
+ ## Download
30
+
31
+ ```py
32
+ from huggingface_hub import snapshot_download
33
+ from pathlib import Path
34
+
35
+ mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3')
36
+ mistral_models_path.mkdir(parents=True, exist_ok=True)
37
+
38
+ snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)
39
+ ```
40
+
41
+ ### Chat
42
+
43
+ After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using
44
+
45
+ ```
46
+ mistral-chat $HOME/mistral_models/7B-Instruct-v0.3 --instruct --max_tokens 256
47
+ ```
48
+
49
+ ### Instruct following
50
+
51
+ ```py
52
+ from mistral_inference.model import Transformer
53
+ from mistral_inference.generate import generate
54
+
55
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
56
+ from mistral_common.protocol.instruct.messages import UserMessage
57
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
58
+
59
+
60
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
61
+ model = Transformer.from_folder(mistral_models_path)
62
+
63
+ completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
64
+
65
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
66
+
67
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
68
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
69
+
70
+ print(result)
71
+ ```
72
+
73
+ ### Function calling
74
+
75
+ ```py
76
+ from mistral_common.protocol.instruct.tool_calls import Function, Tool
77
+ from mistral_inference.model import Transformer
78
+ from mistral_inference.generate import generate
79
+
80
+ from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
81
+ from mistral_common.protocol.instruct.messages import UserMessage
82
+ from mistral_common.protocol.instruct.request import ChatCompletionRequest
83
+
84
+
85
+ tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
86
+ model = Transformer.from_folder(mistral_models_path)
87
+
88
+ completion_request = ChatCompletionRequest(
89
+ tools=[
90
+ Tool(
91
+ function=Function(
92
+ name="get_current_weather",
93
+ description="Get the current weather",
94
+ parameters={
95
+ "type": "object",
96
+ "properties": {
97
+ "location": {
98
+ "type": "string",
99
+ "description": "The city and state, e.g. San Francisco, CA",
100
+ },
101
+ "format": {
102
+ "type": "string",
103
+ "enum": ["celsius", "fahrenheit"],
104
+ "description": "The temperature unit to use. Infer this from the users location.",
105
+ },
106
+ },
107
+ "required": ["location", "format"],
108
+ },
109
+ )
110
+ )
111
+ ],
112
+ messages=[
113
+ UserMessage(content="What's the weather like today in Paris?"),
114
+ ],
115
+ )
116
+
117
+ tokens = tokenizer.encode_chat_completion(completion_request).tokens
118
+
119
+ out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
120
+ result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
121
+
122
+ print(result)
123
+ ```
124
+
125
+ ## Generate with `transformers`
126
+
127
+ If you want to use Hugging Face `transformers` to generate text, you can do something like this.
128
+
129
+ ```py
130
+ from transformers import pipeline
131
+
132
+ messages = [
133
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
134
+ {"role": "user", "content": "Who are you?"},
135
+ ]
136
+ chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3")
137
+ chatbot(messages)
138
+ ```
139
+
140
+ ## Limitations
141
+
142
+ The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
143
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
144
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
145
+
146
+ ## The Mistral AI Team
147
+
148
+ Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall